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Abstract
In recent years, significant advancements have been achieved in the domain of machinemonitoring as witnessed from the beginning
of the new industrial revolution (IR) known as IR 4.0. This new revolution is characterized by complete automation, and an increase
in the technological deployments and advanced devices used by various systems. As a result, considerable advancement has been
reported by researchers and academia around the world by adopting and adapting the new technology related to the machine
condition monitoring problem. For these reasons, it is important to highlight new findings and approaches in machine condition
monitoring based on the wireless sensor solution and machine learning signal processing methodology that are relevant to assist in
advancing this new revolution. This article presents a comprehensive review on tool condition monitoring (TCM), tool wear, and
chatter based on vibration, cutting force, temperature, surface image, and smart label monitoring parameters from signal acquisition,
signal processing methodology, and decision-making, particularly for the milling process. The paper also provides a brief intro-
duction to the manufacturing industries and computer numerical control (CNC) machine tool demand and a review of machine
monitoring and countries involvement in machine monitoring, as well as the approaches and a survey of machine monitoring. The
aim is to contribute to this rapidly growing field of machine condition monitoring research by exploring the latest research findings
on the solution approach for milling machine process monitoring, to help expedite future research, and to give some future direction
that needs to be considered as a path to produce a standardized CNC machine platform.
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1 Introduction

Manufacturing industries around the globe are currently
experiencing a significant transformation known as
Industrial Revolution 4.0 (IR 4.0), which was introduced in

2011. The aim of IR 4.0 is to produce product models that are
very flexible in terms of production and services [1]. To
achieve this aim, communication in real time with surround-
ings, people, machines, devices, and products during produc-
tion must be outstanding. It is important for every country to
adopt and adapt the IR 4.0 trend by meeting the challenges
and capitalizing on the advantages of the economic globaliza-
tion opportunities. This is followed by the need to enable
communications among different countries in the same lan-
guage to achieve the aim of the slogan “Design Anywhere,
Build Anywhere, and Service Anywhere” (DABASA) [2, 3].

In manufacturing industries, conventional machining oper-
ations, such as turning, milling, drilling, and grinding, are
classified as the most common activities in production envi-
ronments. With the rapid development of computer applica-
tions and technology, conventional machining has been grad-
ually transformed into modern machining operations with ef-
ficient support for large scale manufacturing. Although many
of these advancements in machining have been implemented
based on the programming language known as G-code (ISO
6936), it is a low-level programming language with a limited
amount of information and is unable to provide data feedback.
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As a result, CNC machines have limited capabilities in terms
of their movement. They follow the programmed input even if
unsuitable machining parameters are assigned. Furthermore,
in the absence of a monitoring system, these scenarios may
result in machine tool downtime. Machine downtime is de-
fined as a certain duration of time during which no machining
operation can be done on the workpiece [4], and can be divid-
ed into two—unavoidable and avoidable. The former occurs
due to machine maintenance or any replacement of machine
components, while the latter is due to disturbances during
machining processes, which include overloading of spindle
torque, excessive cutting force, chatter, tool wear, and other
constraints [5]. The problem does not end at the machining
process as it could typically lead to a major problem of prod-
uct quality deterioration [6]. Machine downtime due to tool
breakage has been estimated to average 6.8% [7], but can be
up to 20% [8]. One of the main principles of eliminating these
issues is by automating the current machining process condi-
tion monitoring [9–12] and applying a high-level program-
ming language known as standard for the exchange of product
data (STEP-NC) to control the machining process [2, 13–16].
This can be achieved by the integration of wireless sensor
network (WSN) information and STEP-NC programming lan-
guage with machine tools. Adopting this for the current ma-
chining process system will have a major influence on the
production lines in terms of increased productivity and sav-
ings of up to 50% and 40%, respectively [4, 17].

Numerous studies have been conducted regarding the au-
tomation of machine condition monitoring to produce high-
quality products the first time, effectively, and efficiently,
without any waste [18–20]. This was proven by the results
based on the data gathered from various databases. Based on

the search, a total of 1306 journal articles were found from a
variety of multidisciplinary studies. The first serious discus-
sions and analyses of machine condition monitoring emerged
in 1969 by the McDonnell-Douglas Corporation, as reported
by Hillman [21]. The proposed system was based on graphic
cathode ray tube terminals for three significant purposes,
namely to reduce flight test development time, certification
time, and the costs of data processing. Furthermore, the sys-
tem was unequally developed to enable time-sharing into real-
time data of up to 2 million bits per second of the total
bandwidth.

From the 1306 journal articles found, unreliable articles were
excluded, and the authors came to the conclusion that the re-
search onmachine conditionmonitoring can be divided into two
sections, namely machine condition monitoring and machine
process monitoring. Machine condition monitoring includes
the monitoring of machine components, such as gears and bear-
ings [22, 23], while machine process monitoring includes the
monitoring of cutting tools and workpieces [6, 13, 24]. Both
types of research aim to realize the adoption and adaption of
the automated machine monitoring system. This review focuses
on machine process condition monitoring and a total of 60 jour-
nal articles were found to be related to this topic.

Through the screening process of all 60 articles, the re-
search can be divided into three major categories, namely
chatter, tool wear, and tool condition monitoring (TCM).
The respective quantities of publications are illustrated in
Fig. 1. Most research has been conducted on tool wear and
tool condition monitoring, because excellent tool conditions
are vital to produce good quality products and to eliminate
vibrations causing chatter problems. This is particularly so
for cases where the CNC machine itself is in good condition

Fig. 1 Publication trend of
machine process condition
monitoring
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and all the components, such as the cutting tool, the tool hold-
er, and the workpieces, are perfectly positioned without any
misalignment. The information about tool vibrations should
provide details in terms of the periodic shape that resembles
the cutting force, tool conditions, robustness, reliability, and
applicability, at low cost, and be easy to measure without any
modifications to the machine tools; as previously stated by
Sevilla-Camacho et al. [25]. Furthermore, studies on machine
condition monitoring have increased in number over the past
year due to the vision of the world manufacturing industry for
the automation system and the need to fulfill IR 4.0 require-
ments. Figure 2 shows the countries involved in machine pro-
cess condition monitoring research.

The aforementioned review articles have provided an inter-
esting review on the topic of machine condition monitoring,
such as TCM, tool wear, and chatter. The combination of
TCM, tool wear, and chatter was found to be relevant in the
milling process; as cited bymany studies [12, 24, 26–29]. Due
to the considerable amount of work in the area of machine
condition monitoring, several review articles were found be-
tween 2000-2015, such as by Rehorn et al. [4], Li [30], Lauro
et al. [31], and Quintana and Ciurana [32], most of which
focused on the techniques to solve signal acquisition and sig-
nal processing methodologies. However, since 2015, consid-
erable advancement on signal acquisition and signal process-
ing methodologies has occurred due to the emergence of new
technologies, such as WSN, Internet of Things (IoT), and
machine learning. Furthermore, the reflection of the IR 4.0
paradigm for smart manufacturing must also be considered.
Therefore, a new review is required to cover the advancements
and rapidly growing field of machine condition monitoring
research. The main motivation is to explore the latest technol-
ogy and research findings on the signal acquisition and signal
processing methodologies based on wireless sensor solution
and machine learning signal processing methodology,

respectively. This article presents a comprehensive review of
TCM, tool wear, and chatter based on vibration, cutting force,
temperature, surface image, and smart label monitoring pa-
rameters from signal acquisition, signal processing methodol-
ogy, and decision-making, particularly for the milling process.
Finally, conclusions and future suggestions for machine pro-
cess condition monitoring based onWSNwere made as a plan
to adopt and adapt IR 4.0 in the manufacturing industry. In
this article, a review of the research work for the decade from
2010 to 2019 is presented. The design of this article includes a
review of machine monitoring covering the past and present
approaches, and a methodology survey on machine process
condition monitoring.

2 Approaches applied for machine process
condition monitoring

The machine process condition monitoring methodology is
divided into two categories past and present as depicted in
Fig. 3.

2.1 Past methodology

As the manufacturing industry has experienced several revo-
lutions, from IR 1.0 to IR 4.0, the methods of collecting the
monitored data from real machine conditions have also
changed tremendously, as evidenced by the studies reported
yearly by researchers since 1974. Despite the changes in the
data collection methods over the years, the past method of
machine monitoring remains the same. The first step in ma-
chine process condition monitoring is signal acquisition.
Different signals, including vibration, temperature, cutting
force, and others, are used for different purposes in the mon-
itoring system. Previously, milling process signals were col-
lected based on a wired system direct to the personal comput-
er. Due to the rapid development of technology and IR 4.0
transition, the old technique has slowly changed into WSN.
Based on the reviews conducted in this study, particularly for
milling operations, Rizal et al. [18] were the first authors who
set up a WSN-based signal acquisition system. The next step
in monitoring the machine process condition monitoring was
the signal filtering process. During machine rotation, the ma-
chine itself produces different types of noise. Since the noise
comes from different sources, the raw signals need to be fil-
tered by a feature extraction method. There are different types
of signal filtering methods, which include time domain anal-
ysis, frequency domain analysis, and wavelet analysis. The
different methods of signal filtering analysis suit different sig-
nal filtrations and the detection or classification is applied to
finally get the condition of the machining process. Previously,
most condition detections applied statistical approaches.
However, with the passage of time and the development of

Fig. 2 Number of publications by country and type of condition
monitoring
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different software and computer applications, most re-
searchers have turned to applying machine learning algo-
rithms to develop robust decision-based models.

2.2 Present methodology

The key to building smart factories is by turning the traditional
machines into modern machines. Figure 3 illustrates the inte-
gration of 3S, representing the sensing system, decision sys-
tem, and control system for present and future machine pro-
cess condition monitoring. WSN is integrated into traditional
machines to enable wireless data collection and data transfer.
Signal filtration and signal processing are done based on the
machine learning algorithms. Machine learning enables data
to be processed intelligently, with robust and fast responses
without human intervention. The final and next important
stage is to control the current bad conditions of the machining
process, to either stop the machining process, fix the loose
part/component, or self-adjust the cutting parameters to man-
ufacture products and to achieve the best product quality.

3 Survey on machine process condition
monitoring methodology

Machine process condition monitoring research has been
widely explored. In this section, the methods introduced by
each researcher for milling operations since 2010 are compre-
hensively discussed. Based on the survey made on the report-
ed articles, it was found that machine process condition mon-
itoring methodology could be divided into two major

sections—data acquisition methodology and signal process-
ing methodology.

3.1 Data acquisition methodology

In this section, detailed explanations are provided of the five
most usable monitoring parameters for data acquisition meth-
odology, which includes vibration monitoring, cutting force
monitoring, temperature monitoring, motor and spindle mon-
itoring, and smart label monitoring.

1. Cutting force monitoring

The cutting force is the force produced due to the material
properties of the cutting tool and workpiece, cutting tool ge-
ometry, material shearing force, and the friction force between
the cutting tool and the chip [8, 17, 33]. It reflects the real
situation of the machine conditions during the machining pro-
cess and is the most widely used measurement parameter due
to its high accuracy of measurement. Through the observa-
tions made of the existing research, most researchers opted
for the dynamometer for the cutting force measurement due
to its accuracy [12, 24, 34]. However, measurements using a
dynamometer are incompatible with industrial environment
applications due to their low capability and high cost [6, 17].
Moreover, table-type dynamometers and customized
dynamometer-based strain gauges are only applicable to cer-
tain sizes of workpiece [35, 36]. Therefore, Rizal et al. [6] and
Luo et al. [17] proposed the indirect cutting force measuring
technique by embedding a cutting force measurement system.
The introduction of the cutting force measurement by

Fig. 3 Methodology of past and present machine process condition monitoring
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embedding a strain gauge inside the spindle housing was
invented by Rizal et al. [6] while Luo et al. [17] proposed
cutting force measurement by using working tables integrated
with PVDF Thin-Film Sensors. Both approaches were vali-
dated, and the measurement of the cutting force matches the
dynamometer measurement. Most researchers have applied
wired signal acquisition sensor data transfer while Rizal
et al. [6] and Zhong et al. [19] applied WSN. Table 1 summa-
rizes the findings of the cutting force monitoring introduced
by several researchers from 2010 to 2019. Based on the table,
it was concluded that the information from the cutting force
monitoring is applicable to monitoring TCM, tool wear and
chatter, and is suitable to be used with face milling and end
milling operations.

2. Vibration monitoring

Vibration is the second signal commonly measured to
propagate and predict TCM, tool wear, and chatter. Table 2

presents a solution for vibration monitoring, which was
invented as an alternative to the cutting force for machining
process monitoring. It was the most favored indirect measure-
ment parameter for monitoring, and was proposed by most
researchers as the vibration signal offers better characteristics
(periodic shape) similar to the cutting force and rich tool con-
dition information, as well as being robust, reliable, widely
applicable, low cost, and easy to install without any modifica-
tion to the current machine [25]. Vibration signals can be
detected directly using a piezoelectric accelerometer or via
an indirect measurement technique (laser or embedded sys-
tems). Previous scholars reported that vibration sensors could
be placed on the workpiece, CNC table, spindle housing, vise
jaw, or embedded inside spindle housing [6, 52, 57]. Vibration
sensors placed on the spindle housing or embedded offer more
accurate signals compared with those on the workpiece.
Vibration sensors placed on the workpiece are often unstable
due to the potential relative movement of the tool holder dur-
ing the machining [6, 28, 54, 65]. From 2014 onward, some

Table 1 Cutting force monitoring

Author Milling operation Purpose Measuring technique Measuring device Signal acquisition

[6] Face milling Tool wear Indirect Strain gauge WSN

[37] Face milling Tool wear Direct Kistler piezoelectric dynamometer Wired

[38] Face milling Tool wear Direct Quartz dynamometer (3D) Wired

[33] Face milling Tool wear Direct Kistler piezoelectric dynamometer Wired

[39] Face milling TCM
Tool wear

Direct Cutting force signal Wired

[40] Face milling Tool wear Direct Kistler rotating dynamometer (3D) Wired

[12] End milling Chatter Direct Kistler dynamometer Wired

[17] End milling TCM Indirect PVDF thin film Wired

[24] End milling TCM Direct Kistler quartz dynamometer (3D) Wired

[34] End milling Tool wear Direct Kistler quartz dynamometer Wired

[41] End milling Tool wear - - Wired

[35] End milling Tool wear Direct Kistler dynamometer Wired

[42] End milling TCM Direct Kistler dynamometer Wired

[36] End milling Tool wear Direct Kistler mini dynamometer Wired

[43] End milling Tool wear Direct Kistler dynamometer Wired

[44] End milling Tool wear Direct Kistler 9265B quartz dynamometer (3D) Wired

[45] End milling TCM Direct Dynamometer (3D) Wired

[46] End milling TCM Direct Kistler dynamometer Wired

[47] End milling Chatter Direct Kistler dynamometer Wired

[48] End milling Chatter Direct Kistler dynamometer
(3D)

Wired

[49] End milling TCM
Tool wear

Direct Dynamometer (3D) Wired

[50] End milling Tool wear
TCM

Direct Kistler dynamometer (3D) Wired

[51] End milling TCM Direct Kistler dynamometer Wired

[52] End milling Tool wear Direct Kistler dynamometer Wired

[19] Milling TCM Direct Force WSN
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studies switched to utilize WSN for signal acquisition pur-
poses [6, 18–20, 57, 59, 66]. The researchers believed that
WSN enables real-time monitoring anytime and anywhere,
and the infrastructure of the monitoring system requires less
cabling, is low in cost, and requires shorter deployment time
compared with wired sensors. Furthermore, the machine
downtime due to maintenance can be controlled for increased
production efficiency and product quality, together with a re-
duction in labor cost and human error.

From the findings, vibration monitoring is suitable for
TCM and tool wear as well as chatter for both face and end
milling operations. It was also found that only 20% of the
research proposed applied indirect measuring techniques
while others applied direct. Besides that, monitoring by a
WSN was only applied by 23% of the researchers.

Utilization of vibration monitoring enables easy installments,
is low in cost, and offers low power consumption compared
with a dynamometer.

3. Motor and spindle monitoring

Another indirect sensory device that is applicable for
reflecting the real situation of machine conditions during a ma-
chining process after cutting force and vibration is the spindle
or motor power. Table 3 presents the motor and spindle-based
monitoring approaches that have been proposed recently. As
discussed earlier, although cutting force is the best measure-
ment device in terms of accuracy, it is expensive and not com-
patible for use in the industrial environment, while the vibration
signal produces a different value depending on where it is

Table 2 Vibration monitoring

Author Milling operation Purpose Measuring technique Measuring device Signal acquisition

[6] Face milling Tool wear Indirect Piezoelectric accelerometer WSN

[37] Face milling Tool wear Direct Kistler piezoelectric accelerometer Wired

[53] Face milling TCM Direct Triaxle piezoelectric accelerometer Wired

[54] Face milling TCM Direct Tri-axial IEPE accelerometer Wired

[25] Face milling TCM Direct ADXL321 accelerometer Wired

[38] Face milling Tool wear Direct Piezo accelerometer Wired

[30] Face milling Tool wear Direct Kistler Piezo accelerometer (3D) Wired

[55] Face milling TCM Direct Vibrational signal (3D) Wired

[56] Face milling TCM
Tool wear

Indirect Laser Doppler vibrometer Wired

[24] End milling TCM Direct Kistler piezoelectric accelerometers (3D) Wired

[57] End milling Chatter Indirect Microelectromechanical system WSN

[34] End milling Tool wear Direct Kistler Piezo accelerometers Wired

[28] End milling TCM
Tool wear

Direct
(fixed in the machine spindle)

Piezoelectric accelerometer micro 30D Wired

[41] End milling Tool wear - - Wired

[58] End milling Tool wear Direct Triaxle accelerometer Wired

[59] End milling TCM
Tool wear

Indirect Triaxle accelerometer (3D) WSN

[35] End milling Tool wear Direct Tri-axial accelerometer (3093B13) Wired

[42] End milling TCM Indirect Triaxle accelerometer Kistler 9257BA Wired

[60] End milling TCM Direct Biaxial ADXL321 accelerometer Wired

[61] End milling Chatter Direct PCB 352C65 accelerometer (2D) Wired

[62] End milling TCM Direct PCB356A15 accelerometer Wired

[18] End milling Tool wear Indirect Piezoelectric accelerometer (MT32-ICP) WSN

[63] End milling Tool wear Direct Vibration signal Wired

[64] End milling Tool wear Direct Accelerometer (3D) Wired

[65] End milling TCM Direct Triaxial piezoelectric accelerometer Wired

[51] End milling TCM Direct Kistler piezoelectric accelerometer 8692C50 Wired

[52] End milling Tool wear Direct Piezoelectric accelerometer Kistler 9257A Wired

[66] Milling TCM Direct – WSN

[20] Milling TCM Direct ADXL 345 WSN

[19] Milling TCM Direct Vibration WSN
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mounted. Thus, the application of the spindle or motor power is
more suitable in industrial environments. Ammouri and
Hamade [70] mentioned that the spindle or motor power was
proportional to and correlated with the torque and cutting
forces, respectively. Besides that, the spindle or motor power
signal can be acquired easily as the installation does not inter-
rupt the current machine tool structure [51, 58, 69]. Apart from
that, the spindle or motor current has proven to provide a better
tool condition monitoring signal compared with the spindle or
motor power. Several studies proposed machine condition
monitoring based on the spindle or motor current [20, 25, 27,
62, 70–73]. Based on observations, most researchers have ap-
plied a wired current sensor [20].

It is observed that motor and spindle-based monitoring is
more applicable in replacing the cutting force and vibration
monitoring for tool wear and TCMmonitoring for any milling
operation as it offers the same advantages as vibration moni-
toring, is easy to install, and does not interrupt any machine
structure.

4. Temperature monitoring

Temperature is another parameter that has received consid-
erable attention [18–20, 66, 74], as shown in Table 4.

Researchers have agreed that high temperatures will contrib-
ute and create abnormalities in the cutting process. The in-
crease in temperature during machining may cause tool wear,
degradation of workpiece quality, and increased tool cost
[18–20, 66, 74]. In terms of the measurement of cutting, the
temperature is complicated and difficult due to its scalar field,
which is different throughout the system and cannot be de-
scribed at a point. However, the success of measuring temper-
ature results in maintaining the cost of the cutting tool, work-
piece, and total production cost. Based on the review, it was
found that all the researchers introduced a contact type tem-
perature measuring technique. In 2013, Sivasakthivel and
Sudhakaran [74] applied temperature sensor by inserting the
K-type thermocouple inside the hole at the back of the work-
piece with the signal acquisition via a wired system. Rizal
et al. conducted a series of work in 2014 [18] and 2018 [6]
by embedding a K-type thermocouple in the cutting tool and
an applied wireless telemetry system for signal acquisition. As
the IoT became widespread, Zhong et al. [19], Zedong and
Azman [20], and Deng et al. [66] introduced the application of
WSN temperature acquisition nodes by deploying the sensor
on various components to enable direct temperature monitor-
ing. Based on author review, none of the research proposed a
non-contact temperature measuring technique and, except

Table 3 Motor and spindle monitoring

Author Milling operation Purpose Measuring technique Measuring device Signal acquisition

[67] Face milling Tool wear Indirect CTA 213 spindle current sensor Wired

[68] Face milling TCM Indirect Power sensor (CE-P41) spindle power signal Wired

[58] End milling Tool wear Indirect Spindle power Wired

[69] End milling TCM Indirect Universal power cell Wired

[70] End milling TCM Indirect Current transducer Wired

[62] End milling TCM Indirect Honeywell CSNP611 (3-phase) (current) Wired

[71] End milling TCM Indirect Keyence eddy current Wired

[72] End milling TCM Indirect Feed motor current signal Wired

[50] End milling Tool wear
TCM

Indirect Spindle rotary encoder Wired

[51] End milling TCM Indirect Spindle power Wired

[20] Milling TCM Indirect SCT013 WSN

Table 4 Temperature monitoring

Author Milling operation Purpose Measuring technique Measuring device Signal acquisition

[6] Face milling TCM Contact Type-K thermocouples WSN

[18] End milling TCM Contact Type-K thermocouple WSN

[74] End milling Tool Wear Contact Type-K thermocouple Wired

[66] Milling TCM Contact Temperature sensor WSN

[20] Milling TCM Contact DS18B20 WSN

[19] Milling TCM Contact Temperature sensor WSN
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Sivasakthivel and Sudhakaran [74], almost all of the re-
searchers shifted to a WSN signal acquisition method until
2018. Besides that, only Sivasakthivel and Sudhakaran [74]
proposed machining parameter optimization using a mathe-
matical model and genetic algorithm for machining process
control activity while others only focused on temperature
monitoring activity.

5. Surface image monitoring

Surface image monitoring could be another important pa-
rameter to describe the current condition of the machining
process. It is mainly applied for tool wear or chatter monitor-
ing. From the review, surface image monitoring approaches
were proposed by several researchers for different purposes,
as summarized in Table 5. These studies applied two types of
surface monitoring approach, namely direct and indirect sens-
ing. In direct sensing, surface images are retrieved directly by
capturing the surface image of the workpiece or cutting tool
using a microscope, charge couple device (CCD) camera,
electrical resistances, radioactive isotopes, and others. The
captured images are evaluated by using image analysis tech-
nology while indirect sensing measures the auxiliary in-

process quantities, such as cutting force, vibration, sound,
acoustic emission, temperature, spindle power and displace-
ment, and the status of the workpiece or cutting tool are eval-
uated by analyzing the collected information. Numerous stud-
ies have applied indirect sensing in their research [12, 24, 28,
30, 34, 35, 41, 43–46, 56, 63, 67, 76, 78]. They also applied
direct sensing approaches to verify the performance of the
indirect sensing approaches. Besides that, there are two ways
of measuring tool wear, which are contact and non-contact
measuring techniques. Usually, in the contact measuring tech-
nique, a Leica MZ 12.5 stereo microscope, Olympus tool
makers microscope, digital microscope, or microscope is used
to observe the tool wear value. For the non-contact measuring
technique, most researchers utilize a CCD camera, single-lens
reflex camera, optical microscope, and three-dimensional
(3D) laser scanning microscope. Only Yang et al. [12] and
Ritou et al. [74] made their own imaging mechanism to enable
flank wear or tool wear shape and value observation. Almost
all studies applied time domain analysis to observe the tool
wear shape and value. Jennings et al. [33] and Wang and
Wang [55] applied surface topography and statistical methods
while Sun et al. [75], Liukkonen and Tsai [79], and Dutta et al.
[77] applied their own image processing techniques.

Table 5 Surface image monitoring

Author Milling operation Purpose Measuring technique Measuring device Signal acquisition

[11] Face milling Tool wear Non-contact Machine vision system Wired

[67] Face milling Tool wear Contact Microscope Wired

[37] Face milling Tool wear Contact Leica MZ12 Wired

[38] Face milling Tool wear Non-contact Optical microscope Wired

[33] Face milling Tool wear Contact Digital microscope Wired

[30] Face milling Tool Wear Contact Microscope Wired

[56] Face milling TCM
Tool wear

Non-contact CCD camera microscope Wired

[41] Face milling Tool wear - - Wired

[12] End milling Chatter Contact Microscope Wired

[27] End milling Tool wear Non-contact Machine vision system Wired

[75] End milling Chatter
TCM

Non-contact Single-lens reflex camera Wired

[34] End milling Tool wear Contact Leica MZ12 microscope Wired

[28] End milling TCM
Tool wear

Non-contact CCD camera (non-contact) Wired

[35] End milling Tool Wear Non-contact Optical microscope Wired

[36] End milling Tool wear Non-contact 3D laser scanning microscope (non-contact) Wired

[43] End milling Tool wear Contact Olympus microscope Wired

[44] End milling Tool wear Contact Leica MZ 12.5 stereo microscope Wired

[45] End milling TCM Contact Olympus tool makers microscope Wired

[63] End milling Tool wear Contact Digital microscope Wired

[46] End milling TCM Contact Microscope Wired

[76] End milling Tool wear Contact Leica MZ12.5 stereo microscope Wired

[77] End milling Tool wear Non-contact Optical microscope Wired
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By considering the findings in Table 5, surface image mon-
itoring is mostly applied to observe the flank wear value
offline. Nevertheless, it is also used to verify the performance
of the indirect sensing approach, such as vibration and cutting
force monitoring for comparison purposes. Furthermore, to
enable online surface image monitoring, a non-contact mech-
anism should be considered.

6. Smart label monitoring

Product barcode or product labelling is included as an im-
portant part of a monitoring system. Through product barcode
or labelling, a product can be traced easily. In the past, a
barcode system was used for labelling in the entire
manufacturing environment for resource identification [79].
However, there are some drawbacks to barcode application,
and it is not practical for use in a manufacturing environment,
especially on the shop floor because it is easily polluted by
dust and oil, which makes it difficult for scanning. Since
World War II, radio-frequency identification (RFID) technol-
ogy has been used by the British Defense Department for
aircraft detection [80]. In this technology, digital data is
encoded in RFID tags and a RFID reader is captured through
radio waves. RFID has its working mechanism similar to that
of a barcode, but with many more advantages. It works as an
automatic object identification, where it collects data and
sends it directly to the computer system without any human
intervention. RFID is beneficial for workpiece or part moni-
toring activity, as it enables products to be traced automatical-
ly and adds value to the intelligent machine monitoring. Based
on the review conducted, Zhong et al. [19] have been the only
researchers who applied RFID technology in their milling
process monitoring system since 2010. The researchers ap-
plied a wireless RFID tag and Reader on each workpiece
thereby enabling it to be traced anywhere on the shop floor
or even after finishing the machining process as a complete
product.

3.2 Signal processing methodology

This sub-section explains the steps for the signal processing
methodology and discusses in detail the method applied by
several studies to process the uncooked signal into a valuable
signal that can be used to make a conclusion or any decision
regarding tool condition monitoring.

1. Feature extraction and statistical approach

Several steps need to be taken before any decision can be
made. The first step is cleaning, filtering the raw signal by the
pre-processing process. The next important step is feature ex-
traction, since the signal acquired from the cutting process is
assumed to be nonlinear and nonstationary, and to contain

information about the condition of the process. The three most
important signal processing methods are time domain, fre-
quency domain, and time frequency domain. Generally, the
types of features extracted from the time domain signal are
arithmetic mean, average, magnitude, root mean square
(RMS), standard deviation, skewness, kurtosis, signal power,
peak to peak, crest factor, ratios of signals, and signal incre-
ments for statistical method and auto-regression (AR),
autoregressive moving average (ARMA), time domain aver-
aging (TDA), and other information for time series analysis
[24, 81]. The frequency domain is the signal obtained from the
time domain signal, which is transformed to the frequency
domain via fast Fourier transform (FFT). The frequency do-
main signal only consists of frequency amplitude without time
information, such as power spectrum, peak-to-peak ampli-
tude, and tooth frequency [24]. Both time domain and fre-
quency domain assume that the signal is stationary. To enable
the availability of both types of information, the frequency
domain needs to be transformed to the time-frequency domain
via wavelet transform. Wavelet transform enables the wave to
be transformed into a wavelet and enables the hidden infor-
mation regarding the condition of the tool to be extracted.
Furthermore, to extract a wavelet coefficient using the wavelet
transform method, discrete wavelet transform, continuous
wavelet transform, and wavelet packet transform are utilized
to reflect the tool states [82]. Discrete Fourier transform and
statistical analysis using linear least squares is applied to the
vibration signal to track the magnitude of the energy at the
tooth pass frequency under a 40-Hz band and to trace the tool
condition consistently including any drastic changes that oc-
cur in the tool’s life [65]. Tool wear appearance is found by
monitoring the variation in rotational frequency and observing
tool breakage by the sudden variation in the frequency ampli-
tude [50]. The power signal is analyzed by wavelet packet
transform together with the independent component analysis
and short-time Fourier transform (STFT) to detect tool break-
age but is unable to detect minor breakage [68], while Sevilla-
Camacho et al. [72] proposed tool breakage monitoring based
on the motor current signal by wavelet packet transform and
statistical methods to compare with a normal cutting threshold
to detect tool breakage efficiently. Other researchers that ap-
plied statistical methods are Rizal et al. [6], Luo et al. [17],
Zedong and Azman [20], Sevilla-Camacho et al. [25], Zhu
et al. [45], Aghazadeh et al. [52], and Friedrich et al. [57].
Nevertheless, the time domain and frequency domain, time-
frequency domain, and statistical analysis contain a huge
number of features, and executing analysis for each available
feature is time consuming, and may contain redundant infor-
mation that will affect the final result if irrelevant features are
selected. Therefore, it is important to select the most relevant
information and eliminate redundant information from the
available features by feature fusion/reduction method or fea-
ture selection method.
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2. Feature fusion and feature selection

The feature fusion/reduction method or feature selection
method is able to reduce the time complexity of the signal
processing algorithm, especially in the machine learning mod-
el. In the feature reduction method, a set of multidomain fea-
ture parameters is set by linear or nonlinear mapping to obtain
a new parameter. This new parameter is then used as an input
to the monitoring model. For example, Li [30] used multi-
class support vector machine recursive feature elimination
(SVM-RFE) to remove less and irrelevant features from the
pre-set features to identify the tool wear status. The researcher
selected 8 out of the 213 original features and the 8 features
provided the same accuracy as the 213 original features.
Another dimensional reduction algorithm used by Wang
et al. [63] is locality preserving projection (LPP) for feature
vector reduction. Recursive maximum likelihood estimation
(MLE) is applied to update the feature parameters based on an
aperiodic monitoring interval [43].Madhusudana et al. in their
series of work [53, 54] proposed the decision tree (J48), for
their feature selection method by classifying tool condition
into four types of tools which include healthy, flank wear,
chipping, and breakage. Madhusudana et al. [54], mentioned
that they reduced 30 histogram features to 7 features. The
kernel principle component analysis (KPCA) algorithm for
feature reduction was utilized for a total of 65, which included
time domain, frequency domain, and wavelet domain features
[34]. Based on the review of the available research reporting
on the feature fusion/reduction methods, it shows that the
feature fusion method is more comprehensive and allows in-
volvement of all the pre-set features during the feature reduc-
tion process. Nonetheless, the involvement of all of the pre-set
features in the training phase for online monitoring will in-
crease the computation time, increase the maintenance costs,
and affect the performance of monitoring [24, 34, 35, 53].
Different from the feature fusion method, the feature selection
method only applies the dominant features from the pre-set
features to be analyzed next in the monitoring model. Based
on studies by Cho et al. [51], the researcher applied the entro-
py correlation algorithm to select 25 features out of 135 fea-
tures from the multisensory signal. Another researcher Hsieh
et al. [64] selected five features through class mean scatter
criteria and reduced the spectral signal bandwidth from 120
to 30 Hz for feature selection. Zhang et al. [59] utilized the
Pearson’s Correlation Coefficient (PCC) algorithm to select
the most relevant feature for tool wear values. Out of 144
feature parameters, 13 were selected based on the algorithm.
The minimal redundancy and maximal relevance (mRMR)
algorithm was utilized to select the most signification feature
for online monitoring [46]. By comparing the feature fusion
and feature selection methods, the feature selection method
was able to reduce the number of input parameters to the
monitoring model and only input features that had a strong

correlation with the tool status. Moreover, it was also able to
improve the computing efficiency. However, the feature se-
lection method does not consider the influence of the selected
parameter on the prediction accuracy [24, 34]. Therefore, it is
important to consider the optimization method to select the
most relevant combination of the feature parameters that result
in high prediction accuracy. The reviews by Zhou and Xue
[24] and Wang et al. [34], utilized the optimization method in
their feature combination selection approach using the
Genetic Algorithm and Differential Evolution, respectively.
Using their approach enables high prediction accuracy, im-
proves computing efficiency, and also minimizes the mainte-
nance cost.

3. Decision-making based machine learning algorithm

Machine Learning is a subset of artificial intelligence, it is a
technique that enables prediction or making decisions based
on a set of data [83]. Machine Learning enables a computer to
learn and react like humans. Machine Learning is competent
for dealing with complex mechanical issues like prognostics
due to the degradation process and which are difficult to study
using statistical methods. Hence, machine learning decision-
making techniques have become the choice for machine tool
condition monitoring. Machine Learning can be divided into
two main types based on the training characteristics, which
include supervised learning and unsupervised learning.
Supervised learning is a type of machine learning that works
under supervision; its prediction is based on a labelled data
set. Supervised machine learning can be divided into two typ-
ical tasks—regression and classification. Classified machine
learning assigns a category to each data image; for example,
the category of two types of tool—healthy tool and worn tool,
while regression predicts a value for each instance; for exam-
ple, determining the relationship between the temperature and
tool wear. The types of supervisedmachine learning algorithm
used for the classification task are support vector machine
(SVM), decision trees, k-nearest neighbor (KNN), and naïve
Bayes, while the algorithms for the regression task include
linear regression and polynomial regression. Supervised ma-
chine learning for classification could be divided into two—
classic machine learning (SVM, decision tree, KNN, naïve
Bayes) and deep learning (convolutional neural network
(CNN), recurrent neural network (RNN), artificial neural net-
work (ANN)). Unsupervised machine learning is a type of
machine learning that works without supervision and is the
opposite of supervised machine learning. It recognizes pat-
terns of unlabeled data sets and groups them according to
the similarities. Types of unsupervised machine Learning are
clustering and dimension reduction. The clustering algorithm
includes k-mean clustering, hidden Markov model (HMM),
and latent Dirichlet allocation (LDA), while the dimensions
for the reduction algorithm include Principle Component
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Analysis. Based on the observations and review work, the
machine learning methods applied by various researchers
since 2010 until now are as follows:

i. ANNs, similar to the human brain, mimic the working
structure of the human brain. They comprise numerous
nodes that are connected to the other in a complex layer
[84, 85]. ANNs have been the most popular artificial in-
telligence technique applied in the area of machine condi-
tion monitoring since 1940 [86]. By training multi-layer
networking, ANNs are effective at learning complex non-
linear relationships. Tool wear estimation based on the
ANN model was tested on 25 different cutting conditions
and time intervals and demonstrated 99.2% correlation
between the actual and the experiment value [40]. The
backpropagation neural network was applied for tool wear
monitoring using spindle vibration and a 100% classifica-
tion rate was obtained by improving the bandwidth size of
the spectral signals [64]. Cus and Zuperl [49] utilized
ANNs, together with the adaptive neuro-fuzzy inference
system (ANFIS) method to classify tool breakage and tool
wear in their research. ANFIS connects the nonlinear re-
lationship between sensor data and tool wear in ANNs to
estimate the tool flank wear. The application of ANFIS
together with ANNs provides an extension to the level of
transparency, which was not applicable to the single appli-
cation of ANNs. Even though ANNs perform best for
complex nonlinear relationships, the generalization ability
of ANNs is reduced due to random initialization of the
parameters in the ANNs structure. Moreover, the applica-
tion of ANNs for high quality and large amounts of data to
enable training is not suitable for industrial applications.

ii. The neuro-fuzzy system is a technique that couples the
neural networks and fuzzy logic paradigm to achieve
modelling simplicity and provide explicit knowledge, re-
spectively [87]. A comparison between NN and the
neuro-fuzzy model was carried out for tool condition
monitoring and remaining useful life prognostics [59].
Based on the experiment, it was found that the neuro-
fuzzy model performed best with the smallest MSE and
MAPE and the biggest R2 compared with the NN model.
A sequential fuzzy clustering based dynamic fuzzy neural
network (SFCDFNN) was utilized to enable fault diagno-
sis and prognosis in a complex system [42]. Based on
other available models, SFCDFNN is easy to implement
and suitable for industrial applications. Nonetheless, the
two paradigms are coupled together, as the neuro-fuzzy
model still requires an amount of high-quality data for
training the data.

iii. The HMM has been broadly used for speech recognition
with established computing performance and strict data
structures in the field of condition monitoring and fault
diagnosis [39, 88]. HMMperforms better than ANNwith

easy interpretation ability, and is applicable for small
sample, nonlinear, complex regressions, and classifica-
tion [84, 88]. Moreover, HMM has the ability to outper-
form ANNs and the Neuro-fuzzy model in an industrial
environment [39, 85]. The continuous hidden Markov
model (CHMM) analysis to diagnose tool wear status
followed by the Gaussian regression model was utilized
to predict the remaining useful life of the cutting tool
[39]. Based on the analysis from the diagnosis, CHMM
is capable of diagnosing tool wear status with 97.6%
accuracy. Wang and Wang [39] also claimed that the
proposed approach is suitable for applications in small
and medium enterprises with a small set of data and is
capable of predicting the remaining life of the cutting tool
accurately using the Gaussian regression model. Other
research on HMM was proposed by Geramifard et al.
[44] for tool wear monitoring. The research was done
on the basis of improving the flexibility of the original
HMM and to deal with complicated tool state switching
strategies and various weighting schemes by applying the
multi-model HMM. Hong et al. [35] proposed tool wear
monitoring states by the combination of the Wavelet
Packet Transform and Fisher’s Discriminant and found
that the monitoring approach was applicable for deter-
mining the normal wear and premature failure accurately.
However, the HMM application is limited to the Markov
Property assumption, which may affect the results in real
situations.

iv. The SVM is a well-known statistical-based learning the-
ory that was introduced in the 1990s [86]. SVM requires
high dimensional features to yield optimal solutions. The
SVM approach was broadly used for the purpose of clas-
sification and regression. SVM for classification has
gained high research interest, which was based on its
excellent generalization capability and efficient computa-
tional capability compared with other machine learning
algorithms [89]. Multiclass SVM has been used to clas-
sify and estimate tool wear, tool breakage, and chipping
detection based on a multi fusion sensory data set [51].
Based on their research, SVM outperforms the neural
network approach due to its nature of structural risk min-
imization. The integration of SVM with kappa statistics
uses a confusion matrix to perform tool condition classi-
fication [28]. The research also studied the performance
of the final result by applying two different kernels. It was
found that different kernels give different performance
results based on each kernel objective. LS-SVM provides
better resistance impatient capacity and minimum opera-
tion speed. Based on the practical experiment, LS-SVM
has greater generalization capability and a good error of
estimation compared with neural networks. Samix Dutta
et al. [77] performed the support vector machine regres-
sion model to predict progressive tool flank wear based
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on surface image analysis. SVMR requires less training
data set based on its generalization capability. SVMR
effectively predicts the type of tool flank wear degrada-
tion with 94.8% average correlation between the mea-
sured and predicted value of tool wear. Nevertheless,
SVM is not able to provide a probabilistic prediction. It
is only able to provide point prediction [90]. Therefore,
Tipping [91] proposed an extended version of SVM by
formulating RVM, which is capable of providing com-
plete predictive distribution. The application of the RVM
based multicategory tool wear monitoring construct is by
binary classifier and multi nominal function [33].
Through evaluation of the SVM and RVM performance,
RVM provides stronger generalization performance to-
gether with higher accuracy and is less time consuming.
After generalization performance, the speed capability
and sample size issue, another important aspect that needs
to be considered in SVM and RVM application and per-
formance is the kernel function selection because differ-
ent kernel functions have different levels of performance.
Therefore, a standard need to be established to select the
most suitable kernel function for specific issues.

4 Discussion

This section wraps up the findings from all the 60 journal
articles reviewed in the previous section. The graphical repre-
sentation of the signal acquisition method, statistical, and ma-
chine learning approaches for signal processing methodolo-
gies and machine learning algorithm percentage distribution
during 2010 to 2019 are summarized in Fig. 4. Based on the
authors’ observation, signal acquisition is done through both

wired and wireless mechanisms. Based on the graphical rep-
resentation in Fig. 4, only 13% of the researchers applied
wireless sensor networks, while 87% of the researchers ap-
plied a wired mechanism for signal acquisition. Even though
the percentage is small, nowadays, the usage of a wireless
sensor network has become more popular in the era of IR
4.0 and to take advantage of the Internet revolution.
Moreover, WSN is the key driver to enable data transfer any-
time anywhere without boundaries and enables the realization
of automated systems. Furthermore, between 2010 and 2014,
most of the studies 57% conducted focused on the time do-
main, frequency domain, statistical, threshold, and observa-
tion method for signal processing solution and were based
on machine learning algorithms, only a few, about 43% of
the researches were found. Meanwhile, between 2015 and
2019, the signal processing methodology using the machine
learning algorithm was slightly higher than the other ap-
proaches with the percentage being 59% and 41%, respective-
ly. Machine learning enables intelligent decision-making, pre-
diction, and estimation with very short time computation time
and the highest prediction accuracy of about 99%. Through
review and observation, the SVM/RVM application is higher
than other machine learning algorithms with 43% of the ap-
plication popularity. Moreover, SVM and RVM outperform
other machine learning algorithms based on the performance
accuracy and capability.

Most of the reviewed articles focused on signal acquisition,
signal filtration, and selection and signal processing mecha-
nisms. Only Friedrich Bleicher et al. [57]focused on integrat-
ing the signal processing with machine tool control system to
enable automated control. Furthermore, to the best of the au-
thors’ knowledge, Deng et al. [66] and Zhong et al. [19] were
the only researchers who proposed machining process moni-
toring under the STEP-NC machining program, which

Fig. 4 Graphical representation of research findings
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enables two-way communication, intelligent control, and up-
dates on the machining parameters during the machining pro-
cess. However, the integration between signal processing and
the control system to develop an intelligent machine monitor-
ing system is still new and is considered to be a new direction
for future implementation.

5 Conclusion

Machine monitoring plays an important role in the future
CNC machine tool system due to its effects on the production
quality and production cost. Therefore, the need for machine
monitoring is always there in future CNC machine tool sys-
tems. In this article, an attempt was made to provide a com-
prehensive review on tool condition monitoring, tool wear,
and chatter based on vibration, cutting force, temperature,
surface image, and smart label monitoring parameters from
signal acquisition, signal processing methodology to
decision-making in the milling process in the past and present.
The article presents a review of machine monitoring from
2010 to 2019. A total of 60 journal articles were reviewed.
The authors believe that this article provides a big picture and
will help future researchers to address the past and present of
machine monitoring for enhanced industrial growth and
development.

From the review, it has been found that most of the ma-
chine monitoring works carried out on the machining process
resolve the issue of machine monitoring. This is done by
selecting the best parameters for signal acquisition by either
the direct or indirect approach. Some of the parameters or
approaches discussed include cutting force, temperature, vi-
bration, surface image, spindle motor signal, feed motor sig-
nal, and application of wired or WSN sensor type as well as
the sensor location. Others are signal processing methodology
from feature extraction using time domain, frequency domain,
time frequency domain, statistical analysis, feature selection,
or feature fusion using a specific algorithm and decision-
making via the machine learning algorithm to obtain the
highest accuracy of decision-making and control system.

From the review, the authors conclude that cutting force is
the most important signal to trace any undesirable machine
process condition. However, other indirect monitoring signals
exist, which may mimic or are proportional to the cutting force
signal output, such as vibration signal, motor and spindle sig-
nal, and temperature signal. Indirect monitoring signals are
more compatible for application in the industrial environment.
Moreover, they are easily installed on the current machine tool
without interrupting the machine structure and are low in cost.
Besides cutting force, smart labelling is another monitoring
parameter that needs to be included in machine monitoring.
Smart manufacturing requires every single resource to be con-
nected to the world.With smart labelling, operators are not only

alerted to the machining process status, but information on the
operators as well as the part being machined is captured.

In the future, a standardized and all in one CNC machine
mechanism needs to be considered to achieve interoperability,
connectivity, and seamless data transfer between cyber and
physical systems. Next, exemplifying a solution on how to
fully utilize machining information for evaluation of machin-
ing performance, quality assessment, benchmarking, and ser-
vice purposes. Besides that, optimization based on real-time
machining process information, data visualization platform,
and control based on any smart device are additional future
works that need to be considered. By comparing the most
popular machine learning algorithm applied in decision-
making SVM and RVM perform best in terms of generaliza-
tion capability, fast response, and high accuracy. However,
another important aspect that needs to be considered in
SVM and RVM application and performance is the kernel
function selection because different kernel functions have dif-
ferent performance capabilities. Therefore, a standardized
model needs to be established to select the most suitable ker-
nel function for specific issues as a new direction for advanced
signal processing methodology.
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