

KEMENTERIAN PENGAJIAN TINGGI

LAPORAN INOVASI PITEX SESI JUN 2020

UNIT PENYELIDIKAN DAN INOVASI

CONCRETE LINTEL PERFORMANCE WITH LECA FOR IBS

DEPARTMENT OF CIVIL ENGINEERING

NAME & MATRIX NO.	MUHAMMAD SALEHUDDIN ISKANDAR BIN
	HISYAMUDIN
	(08DKA18F1005)
	INDRAN A/L SELVAM
	(08DKA18F1009)
	NURULJANNAH BINTI ZAKARIA (08DKA18F1015)
	NUR HAIDA SYAHIRA BINTI ZANUDIN (08DKA18F1033)
SUPERVISOR	PUAN ZARINAH BINTI ZAINI
	PUAN HAZRUWANI BINTI ABD HALIM

CONCRETE LINTEL PERFORMANCE WITH LECA FOR IBS

PROBLEM STATEMENT

According to research held by R.N Raj Prakash and A, Krishnamoarti (2017), study shows that it is very difficult to produce stable lightweight concrete and it is due to the fact that most Lightweight Aggregate (LWA) absorb water in a quick pace. It is inefficient to use aggregates in the immersed, surface-dry condition. Also, water compound for aggregates should be minimized with a specific end purpose to ensure the concrete density remains low.

The next problem, according to Nagashree B and Dr. S. Vijaya 2015, one of the factors of high permanent load is due to concrete self-weight. In according to this, research has been done by researchers to reduce dead load by choosing materials that give concrete low density while maintaining and improving concrete strength

While according to Payam Shafigh and Fathollah Sajedi (2010), the continuous environmental problems, along with decrease in number of conventional aggregates existing has led researchers to use by-products or solid waste materials to produce concretes.

Research Title	Author	Summary	Findings
Effect of	Manasseh	The effect of three different	-best curing method
Curing	Joel	curing conditions on the	to be done to obtain
Condition on		compressive strength and	best strength for our
Some		water absorption of lateritic	LECA concrete block
Properties of	Joseph E.	interlocking bricks, produced	and any concrete
Cement	Edeh	with laterite stabilized and	
Stabilized		cement content was	-best curing method
Lateritic		investigated. The study is	in different condition
		aimed at providing an	of sites
Interlocking		alternative to the conventional	
Bricks		method of curing interlocking	
		bricks. The three curing	
		conditions used in the study	
		are "A" (covering of bricks with	
		tarpaulin after sprinkling with	
		water twice a day) "B"	
		(complete immersion in water	

PAST RESEARCH

		"C" (complete covering with air	
		and water tight polythene	
		bags). Laterite used in the	
		production of interlocking	
		bricks was as an A-2-7 soil,	
		using the AASHTO system of	
		soil classification.	
Investigation	Nandhakumar	Among the various construction	LECA performance
on various		materials, LECA (light weight	with 50% content+
construction	R. Partiphan	expanded clay aggregate) is a	normal aggregate
material LECA,		versatile material due to its	and 100% content+0
thermal	G.	unique properties and is utilized	normal aggregate
insulated and	Thangeeswari	in many applications. LECA blocks	Niv votio ideo for
conventional	T Karthikraia	are highly impermeable and have	Mix ratio idea for
blocks	T. Karthikraja	high performance properties. Thermal insulated blocks are well	LECA Comparing the performance of
	S. Gangadurai	suited for high rise buildings to	normal aggregate
	B.	withstand high temperature. It	concrete and LECA
	5.	requires less steel and concrete	partial and fully
		for structural members due to its	concrete
		lower density. The LECA is mixed	performance
		with grade M30 with 50% and	
		100% of replacement. The	Normal concrete are
		molded concrete blocks were	strong and LECA
		tested to determine the strength	(fully) concrete are
		and workability of the blocks	weak, but with the
		under various experimental	right mix (partial), it
		conditions and different time	can achieve better
		periods such as 7 days and 28	performance than
		days. The tests such as	normal concrete
		compression test and water	
		absorption test were conducted. From the experimental	
		From the experimental investigation, we will be able to	
		conclude the best among these	
		blocks based on their strength.	
Production of	Eathar	The main materials that used in	Possible additive in
Concrete Block	Thanon	this study are cement, sand,	the concrete mixture
Using Recycled	Dawood	gravel, water, superplasticizer	to improve
Aggregate		(Conplast SP423) as well as, the	compressive
		sawdust and/or PVC waste	strength
		materials. Thus, the study	
		includes two stages; the first	
		stage deals with the production	
		of concrete specimens with	
		different percentages of sawdust	
		and/or PVC waste materials as	

		partial replacement of the total aggregate in the Possible additive in the concrete mixture to improve compressive strength mix. The strength of compression and airdry density were tested. The second stage of this study includes the production of concrete block using these waste materials. The produced concrete block units have been tested in compressive strength, density and absorption. The results show that the use of 8% to 10% of PVC waste and combination of PVC waste and sawdust are selected for the production of concrete block units. The decrease in the weights of concrete block due to sawdust and/or PVC waste materials encourages the engineers or researchers to produce such concrete block by the use of these materials in the manufacture. The produced hollow block units produced from the uses of 4% PVC waste + 4% sawdust shows best result, while 5% PVC waste + 5% sawdust	
Physical and	Azhani Zukri	5% PVC waste + 5% sawdust comes second. This paper focused on the	Performance of
Mechanical Properties of Light-weight Expanded Clay Aggregate (LECA)	Ramli Nazir Khairun Nissa Mat Said Hossein Moayedi	properties of LECA aggregates supplied by LEXCA Sdn. Bhd. through laboratory tests in accordance to the standard specifications. The properties of several LECA produced from different country and production plants are also reviewed for comparative purpose. In addition, the material properties evaluated from previously conducted research also was discussed. It was found that, even though LECA was produced from the same raw materials, it	lightweight aggregates other than LECA without being mixed in concrete (raw aggregate form) Performances of LECA from different manufacturing sites LECA can be classified as gravels The smaller the lightweight aggregate particle

I		has contain manage of success	aina tha bishas the
		has certain range of property values. The properties of LECA show their suitability and potential for replacing natural aggregates in many civil engineering works.	size, the higher the density. LECA aggregate will absorb 30% moisture by mass of dry aggregate
A Comparison study of Fresh and Hardened Properties of Normal Weight Aggregate Concrete	Payam Shafigh Lee Jin Chai Hilmi Bin Mahmud Mohammad A. Nomeli	This study compares the engineering properties of normal weight concrete with those of concrete with two types of lightweight aggregates, namely, oilpalm boiler clinker (OPBC) concrete and lightweight expanded clay aggregate (LECA) concrete. OPBC is a porous solid waste from the palm oil industry, while LECA is an artificial and impenetrable material. The conventional coarse aggregates in a high-strength normal weight concrete were replaced by each of these lightweight aggregates, and the effect of such substitution on the fresh and hardened properties of the concrete was studied. The test results revealed that the OPBC concrete in terms of workability, mechanical properties, and specific strength. The LECA concrete achieved its ceiling strength in 7 days, while the OPBC concrete still had strength gain by time. The LECA concrete demonstrated a greater drying shrinkage than both the normal weight and OPBC lightweight concrete shetween 14 days and 90 days. The use of OPBC must therefore be promoted to produce a cleaner and greener concrete that can benefit the construction and agricultural industries.	OPBC performance compared to LECA Another clue to mix ratio of our LECA concrete Boundary of LECA performance in concrete mixes Lightweight aggregate concrete compared to normal aggregate concrete Use of superplasticizer in concrete Mix used in this previous study was grade 70

Experimental	T Sonia	This research used LECA with	In strongth
Experimental Investigation on Mechanical Properties of Lightweight Concrete Using LECA	T. Sonia R. Subashini	This research used LECA with various percentages to substitute the coarse aggregate and various percentage of fly ash as replacement of cement in concrete. Water cement ratio used was 0.48. The normal aggregate replacement percentage was 20%, 40%, 60%, 80% and 100%. While 15%, 20% and 25% of fly ash replacement percentage for cement concrete. The concrete mix ratio was 1:1.4:2.4 and 1:1.86:0.52. The concrete mixes were casted in standard cube mould and cylinder mould. The casted moulds were cured for 28 days before brought out from water for 24 hours before testing. The tests done are slump test, compressive strength test and split tensile test. The LECA concretes shows better results when replaced with 40% and 60% of coarse aggregate compare to conventional concrete.	In strength performance of 15% replacement of fly ash content with 40% replacement of coarse aggregates concrete for better results to ensure its optimal proportion. The density of concrete is found to decrease with the increase in percentage replacement of normal aggregate by LECA.
Experimental Study on Lightweight Concrete Using LECA and Cinder as Coarse Aggregate (2015)	Nagashree B. Dr. S. Vijaya	Research was done to study the compressive strength and tensite strength, along with workability to fine the correlation between these three for Leca and Cinder as course aggregate for concrete	Slump test shows that 40% Leca with 60% cinder shows best slump compared to other percentage. Despite highest compressive and tensile strength are at 0% Leca and 100% cinder, with accordance of slump test, 40% Leca and 60% cinder are chosen as the best mix percentage in the study

RESEARCH METHODOLOGY

Before the lintel is made, the design has been designed to identify the appropriate features of the lintel and its functions. The design is intended to describe the project to be implemented and to provide more detailed information to produce a quality lintel. The size of concrete lintel that will be produce is 70 mm × 100 mm × 1200 mm.

The data collection procedures (compressive strength test and flexural strength test) were implemented with specific objectives in mind. The tests were initiated with the aim of gaining the data of the lightweight lintel structure to determine if the lightweight lintel structure could be used in the real construction situation.

Data collected from experiments conducted on lintel are reported in the appropriate table using Microsoft Excel. Comparison of results between blocks containing different percentage of LECA for all experiments will be studied and reported in graphic form using Microsoft Excel. This is because the relationship between the experimental data and the material composition of the block is obtained from the block using LECA sample process is studied and discussed and also reported in graph form.

PROPOSED SOLUTION

In accordance to weight problem, we highlighted lightweight materials as a solution. While in accordance to environmental problem and depletion of conventional aggregate, we highlighted by-products material as a solution. With lightweight aggregate and by-products as highlights, we found out LECA, an aggregate which is made by burning clay in rotary kiln over 1.150 °C. According to all past research and also our observation in site, LECA has a very low density when compared to conventional aggregates, which makes it to be a choice to replace aggregate.

LECA according to Nagahree B and Dr. S. Vijaya (2015), is non Destructible, non-combustible and have resistance to attack from dry and wet-rot, also from insects attack. This will affect the artistic value of the concrete as it preserves the concrete surface.

BENEFITS TO ECONOMY / COUNTRY / COMMUNITY / NATURE

In term of economy, the cost of construction industry will reduce due to the reduced weight of concrete by using LECA. Transportation of LECA as raw material is low due to their weight, and Pre-fabricated concrete structure containing LECA can be transported in a larger quantity. Labour usage in attaching concrete members may also be reduced as the concrete containing LECA has lower weight than conventional concrete.

While in term of community, with the use of LECA in concrete and it's trait of good thermal insulation, and sound insulation, Sound pollution may be reduced with the use of this concrete. Energy can also be saved in heating or cooling building. Heat that goes into LECA concrete flows better than conventional concrete, which makes them store less heat compared to conventional concrete.

Next, in term of nature, LECA which is made of clay, the depletion is much lower than conventional concrete. Therefore, the worry of it being fully consumed is little and will slow the depletion of conventional aggregate.

IMPLEMENTATION METHOD

In using LECA as course aggregate, specific mix proportion must be used to obtain specific strength. According to Payam shafigh and Muhammad A. Nomeli (2017), test results of 100% LECA aggregate, when compared to 100%OPBC aggregate and 100%normal aggregate concrete, shows that LECA has the lowest strength among the three. This gives us clue that 100% Leca is not suitable for our mix proportion. Hence, we referred to the other researchers for better mix proportion.

Table shows LECA proportions in concrete mixes done by several researchers, used by us to find out and compare which mix is best.

Author	Mix concrete	Compressive	Density or weight
		strength	
R.N Raj Prakash et al	0%LECA100%Normal	32Mpa	8.4kg
(2017)	20%LECA80%Normal	29Mpa	7.1kg
	40%LECA60%Normal	<mark>25Mpa</mark>	<mark>6.9kg</mark>
	60%LECA40%Normal	19Mpa	6.5kg

	80%LECA20%Normal	15Mpa	5.2kg
	100%LECA0%Normal	13Mpa	5kg
Muhammad A.	100%LECA	15Mpa	2370 kg/m3
Nomeli (2017)	100%Normal	70Mpa	2121 kg/m3
	100%OPBC	55Mpa	1603 kg/m3
T. Sonia et al (2015)	0%LECA100%Normal	34.6N/mm2	2477 kg/m3
	20%LECA80%Normal	30.22 N/mm2	2194 kg/m3
	40%LECA60%Normal	28.56 N/mm2	<mark>1996 kg/m3</mark>
	60%LECA40%Normal	26.4 N/mm2	1868 kg/m3
	80%LECA20%Normal	23.57 N/mm2	1739 kg/m3
	100%LECA0%Normal	21.77 N/mm2	1597 kg/m3
Dr. P. Prakash and	0%LECA100%Cinder	38.6N/mm2	2364 kg/m3
Anil Kumar R. (2015)	10%LECA90%Cinder	37.9N/mm2	2309 kg/m3
M30	20%LECA80%Cinder	37.4 N/mm2	2229 kg/m3
	30%LECA70%Cinder	36.8N/mm2	2182 kg/m3
	40%LECA60%Cinder	36.5 N/mm2	<mark>1910 kg/m3</mark>
	50%LECA50%Cinder	30.4 N/mm2	1837 kg/m3
	60%LECA40% Cinder	27.2 N/mm2	1773 kg/m3
	70%LECA30%Cinder	26.2 N/mm2	1690 kg/m3
	80%LECA20% Cinder	25.1 N/mm2	1636 kg/m3
	90%LECA10%Cinder	24.5 N/mm2	1541 kg/m3
	100%LECA0% Cinder	23.2 N/mm2	1506 kg/m3

According to T. Sonia and R. Subashini (2015), it is shown that LECA reduces density as the use of LECA increases, while it also reduces strength of concrete as the use of LECA increases. But according to the table above, it is shown that LECA shows balanced result between density and strength between 40% use to 60% use. Therefore, we use 50% as a border and thus, our study tests the density and strength of LECA concrete cubes at 48% LECA with 52% conventional aggregate, and 52%LECA with 48% conventional aggregate. Despite our study are on concrete lintel, it is believed that such LECA mix proportion may be applicable in other concrete products.

In term of mixing, as LECA absorbs water, additional water must be added into the mixing aside the water-cement ratio to keep the concrete from being too dry. Cautious is important as adding too much water will make the concrete fail.

CONCLUSION

The primary goal for this project is to produce lightweight lintel structure using LECA. A particular type of lightweight concrete called structural lightweight concrete is the one which is comparative lighter than conventional concrete but at the same time strong enough to be used for structural purposes. It, therefore, combines the advantages of normal weight concrete and discards the disadvantages of normal weight concrete. This lintel structure using LECA will be tested and data will be gathered to determine the success.

REFERENCES

- 1. Shetty M. S. (2003 Edition) Concrete Technology: Theory and Practice, S. Chand & Company Ltd, India.
- 2. Mazur W., Rybarczyk T., Jasinski R., Ł. (2018). Cracking and failure of precast AAC lintels in walls subjected to in-plane vertical loading. *Acta Sci. Pol. Architectura*, 17 (4), 93-104.
- 3. Nandhakumar R, Parthipan G, Thangeeswari T, Karthikraja S and Gangaduari B. 2020. Investigation on Various Construction Material LECA, Thermal Insulated and Conventional Blocks. *IOP Conf. Series : Materials Science and Engineering* 764 012013.
- 4. T. Sonia, R. Subashini. (Volume 5 Issue 11, November 2016). Experimental Investigation on Mechanical Properties of Light Weight Concrete Using Leca. *International Journal of Science and Research (IJSR)*.
- Bogas J. A., Gomes A and Gomes M. G. (2012). Estimation of Water Absorbed by Expanding Clay Aggregates During Structural Lightweight Concrete Production. *Materials* and Structures 45 1565-76.
- 6. Payam Shafigha,b,*, Lee Jin Chaic, Hilmi Bin Mahmudc, Mohammad A. Nomelid (2017) A comparison study of the fresh and hardened properties of normal weight and lightweight aggregate concretes