ORDINARY DIFFERENTIAL EQUATIONS

VOLUME 1 1ST EDITION

JABATAN MATEMATIK, SAINS \& KOMPUTER POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

Ordinary Differential Equations Engineering Mathematics 3

WRITTEN BY
RABIATUL ADAWIYAH BINTI ROSLI
ZURAIDAH BINTI OMAR
NUR RAIHAN BINTI ABDUL SALIM

All Rights Reserved

eISBN No: 978-967-0032-38-2
e ISBN 978-967-0032-38-2

Published by:

Politeknik Sultan Salahuddin Abdul Aziz Shah,
Persiaran Usahawan,
Seksyen U1,
40150 Shah Alam, Selangor.

Telephone No : 0351634000
Fax No : 0355691903

All rights reserved. Apart from any use permitted, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher.

Synopsís

This module contains notes, examples and exercises of material given as a course on Ordinary Differential Equations (ODEs) which is developed and revise based on Topic 3 DBM30033, Engineering Mathematics 3 and DBM30043, Electrical Engineering Mathematics Polytechnic Course Syllabus. All the methods given in the book are explained with the help of solved examples. The book begins with a introduction of differential equations, defines basic terms and outlines the general solution of a differential equation. We really hope that this module is beneficial to assist students to understand the subject more.

Preface

Thanks to Allah S.W.T for granting us strength and time to accomplish this Ordinary Differential Equations book. We also would like to thanks to those who were involved directly or indirectly in making this module success.

Congratulation to all the writers from the department of Mathematics, Science and Computer, Polytechnic Sultan Salahuddin Abdul Aziz Shah who were involve in writing this module:

Rabiatul Adawiyah binti Rosli
Zuraidah binti Omar
Nur Raihan binti Abdul Salim

Contents

Ordinary Differential Equations 1
Introduction 2
Familiarize With and Classify Differential Equations 2
Form of Differential Equation 4
Solution of First Order Differential Equation 9
The Second Order of Differential Equation 29
Solve Particular Solution Second Order of Differential 35Equation

Key to symbols in this book

? This symbol means that you want to discuss a point with your teacher. If you are working on your own there are answers in the back of the book. It is important, however, that you have a go at answering the questions before looking up theanswers if you are to understand the mathematics fully.

AThis is a warning sign. It is used where a common mistake, misunderstanding ortricky point is being described.

Ordinary Differential Equation

> Sherlock Holmes: 'Now the skillful workman is very careful indeed ... He will have nothing but the tools which may help him in doing his work, but of these he has a large assortment, and all in the most perfect order.'
A. Conan Doyle

By the end of this chapter you should be able to:

* Familiarize with and classify the Differential Equation
* Explain the form of the Differential Equation
* Solve the First Order Differential Equation by using method of:
(a) Direct integration
(b) Variable Separable
(c) Substitution $\mathrm{y}=\mathrm{vx}$ (Homogenous Equations)
(d) Integrating Factor (for Linear Equations)
* Solve the Second Order Differential Equation if the auxiliary equations have:
(a) Real and Different Roots where $\mathrm{b}^{2}>4 \mathrm{ac}$
(b) Real and Equal Roots where $b^{2}=4 a c$
(c) Imaginary Roots where $\mathrm{b}^{2}<4 \mathrm{ac}$
* Solve Particular Solution of First and Second Order Differential Equation

1.0 INTRODUCTION

(2) An equation that contains a derivative (or derivatives) of an unknown function is called a differential equation. It is said to be an ordinary differential equation if all derivatives are with respect to a single independent variable, such as

$$
\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}, \ldots, \frac{d^{n} y}{d x^{n}}
$$

The differential equation is said to be partial if there are derivatives with respect to two or more independent variables, such as

$$
\frac{\partial u}{\partial x}, \quad \frac{\partial^{2} u}{\partial x^{2}}, \quad \frac{\partial^{2} u}{\partial x \partial y},
$$

1.1 FAMILIARIZE WITH AND CLASSIFY DIFFERENTIAL EQUATIONS

Basic Definition of the Differential Equation

A Differential Equation is any equation which contains derivatives, either ordinary derivatives or partial derivatives.

Order

The order of a differential equation is the highest order of the derivative present in the differential equation.
Example of first order $\rightarrow 8$
Example of second order $\rightarrow \frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=-2 e^{3 x}$

Degree

The degree of a differential equation is the highest power of the highest derivatives which occurs in the Differential Equation

Example of first order $\frac{d y}{d x}$ and first degree $\left(\frac{d y}{d x}\right)^{1} \rightarrow 8 \frac{d y}{d x}+3 y=6 x$ Example of second order $\frac{d^{2} y}{d x^{2}}$ and third degree $\left(\frac{d^{2} y}{d x^{2}}\right)^{3} \rightarrow\left(\frac{d^{2} y}{d x^{2}}\right)^{3}+6 \frac{d y}{d x}+9 y=-2 e^{3 x}$

EXAMPLE 1

State the dependent variable, independent variable, order, and degree of the Differential Equation below:
(i) $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\sin y\left(\frac{d y}{d x}\right)=e^{x}$
(ii) $\frac{d^{2} y}{d x^{2}}+2 x\left(\frac{d y}{d x}\right)^{2}=x$
(iii) $\frac{d t}{d s}=(t s)^{3}$

SOLUTION
(i) $\left(\frac{d^{3} y}{d x^{3}}\right)^{2}+\sin y\left(\frac{d y}{d x}\right)=e^{x}$

The dependent variable is y and independent variable is x.
This DE has order 3 (the highest derivative appearing is the third derivative) and degree $\mathbf{2}$ (the power of the highest derivative is 2 .)

(ii) $\frac{d^{2} y}{d x^{2}}+2 x\left(\frac{d y}{d x}\right)^{2}=x$

The dependent variable is y and independent variable is x.
This DE has order 2 (the highest derivative appearing is the second derivative) and degree 1 (the power of the highest derivative is 1 .)
(iii) $\frac{d t}{d s}=(t s)^{3}$

The dependent variable is t and independent variable is S.
This DE has order 1 (the highest derivative appearing is the first derivative) degree 1 (the power of the highest derivative is 1 .)

1.2 FORM OF DIFFERENTIAL EQUATION

Differential Equation can occur when arbitrary constant are eliminated from the given function. They follow the rule below:
$\mathbf{1}^{\text {st }}$ order Differential Equation is derived from a function having $\mathbf{1}$ arbitrary constant. $\mathbf{2}^{\text {nd }}$ order Differential Equation is derived from a function having $\mathbf{2}$ arbitrary constants.

Therefore, an \mathbf{n}-th order Differential Equation is derived from a function having ' \mathbf{n} ' arbitrary constants.

(i) $y=A e^{3 x}$
(ii) $y=A x^{2}+3 B x$
(iii) $y=C \cos x+D \sin x$

SOLUTION

(i) $y=A e^{3 x}$

- Differentiate the equation,
- Rearrange (2) so that,
- Then substitute (3) into (1),

$$
\begin{align*}
& \frac{d y}{d x}=3 A e^{3 x} \tag{2}\\
& A e^{3 x}=\frac{1}{3} \frac{d y}{d x} \tag{3}\\
& y=\frac{1}{3} \frac{d y}{d x}
\end{align*}
$$

*Note: Function has 1 arbitrary constant, differentiate 1 time to eliminate the arbitrary constant

(ii) $y=A x^{2}+3 B x$.

- Differentiate the equation (1),
- And again differentiate (2),
- Rearrange (2) so that,

$$
\begin{align*}
& \frac{d y}{d x}=2 A x+3 B \tag{2}\\
& \frac{d^{2} y}{d x^{2}}=2 A
\end{align*}
$$

$$
\begin{align*}
& 3 B=\frac{d y}{d x}-2 A x \tag{4}\\
& A=\frac{1}{2} \frac{d^{2} y}{d x^{2}} \tag{5}
\end{align*}
$$

$$
\begin{aligned}
y & =\left(\frac{1}{2} \frac{d^{2} y}{d x^{2}}\right) x^{2}+\left[\frac{d y}{d x}-2\left(\frac{1}{2} \frac{d^{2} y}{d x^{2}}\right) x\right] x \\
& =\frac{x^{2}}{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-x^{2} \frac{d^{2} y}{d x^{2}} \\
& =-\frac{x^{2}}{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}
\end{aligned}
$$

$2^{\text {nd }}$ order, $1^{\text {st }}$ degree
*Note: Function has 2 arbitrary constant, differentiate 2 times to eliminate the arbitrary constant
(iii) $y=C \cos x+D \sin x$

- Differentiate the equation (1),
- And again differentiate (2),
- Rearrange (3) so that,

$$
\begin{align*}
\frac{d y}{d x} & =-C \sin x+D \cos x \tag{2}\\
\frac{d^{2} y}{d x^{2}} & =-C \cos x-D \sin x \tag{3}\\
\frac{d^{2} y}{d x^{2}} & =-(C \cos x+D \sin x) \tag{4}\\
\frac{d^{2} y}{d x^{2}} & =-(y) \\
y & =-\frac{d^{2} y}{d x^{2}}
\end{align*}
$$

- Then substitute (1) into (4),

$$
2^{\text {nd }} \text { order, } 1^{\text {st }} \text { degree }
$$

*Note: Function has 2 arbitrary constant, differentiate 2 times to eliminate the arbitrary
constant

TEST YOURSELF

Form a differential equation for each of the following functions:
a. $y=A x^{3}+x^{4}$
b. $y=A x^{4}+7 x-9$
c. $y=A x^{2}-B x+x$
d. $y=A \cos (3 x+B)$
e. $y=A x+\frac{B}{x}$
f. $y=A e^{3 x}-6 B e^{3 x}$

CHECK YOUR

ANSWER

a. $x \frac{d y}{d x}=3 y+x^{4}$
d. $\quad \frac{d^{2} y}{d x^{2}}=-9 y$
b. $x \frac{d y}{d x}=4 y-21 x+36$
e. $y=x \frac{d y}{d x}+x^{2} \frac{d^{2} y}{d x^{2}}$
c. $y=-\frac{x^{2}}{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}$
f. $\frac{d^{2} y}{d x^{2}}=9 y$

1.3 SOLUTION OF FIRST ORDER DIFFERENTIAL EQUATION

A solution of an ordinary differential equation is a function that satisfies differential equation, which makes the equation true (left-hand side equal to right-hand side) by manipulate the equation so as to eliminate all the derivatives and leave a relationship between y and x.

There are four methods to solve the differential equation

| Method 1
 Direct Integration
 Variable Separable | |
| :---: | :---: | :---: |
| $\frac{\text { Method 3 }}{\text { Method }}$
 Substitution of $y=v x$ | $\frac{\text { Method 4 }}{}$
 Integration Factor |

1.3.1 DIRECT INTEGRATION

If the equation can be arranged in the form of $d y=f(x) d x$, then the equation can be solved by simple integration, where

$$
\int d y=\int f(x) d x
$$

Solve the following differential equation:
(i)
$\frac{d y}{d x}=3 x^{2}-6 x+5$
(iv) $\frac{d y}{d x}=x^{2}-e^{\frac{x}{4}}$
(ii) $2 y^{\prime}=\sin 5 x$
(v) $x \frac{d y}{d x}=x^{2}+2 x-3$
(iii) $\frac{d y}{d x}-5 x=0$
(vi) $y^{\prime} e^{-x}+e^{2 x}=0$

SOLUTION

(i) $\frac{d y}{d x}=3 x^{2}-6 x+5$

- Rearrange equation, $\begin{aligned} d y & =3 x^{2}-6 x+5 \cdot d x \\ & \text { Integrate both sides, }\end{aligned}\left\{\begin{aligned} d y & =\int\left(3 x^{2}-6 x+5\right) \cdot d x \\ \therefore y & =\frac{3 x^{2+1}}{3}-\frac{6 x^{1+1}}{2}+5 x+c=x^{3}-3 x^{2}+5\end{aligned}\right.$
(ii) $2 y^{\prime}=\sin 5 x$
- Rearrange equation,
- Integrate both sides,

$$
\left\{\begin{array}{l}
\frac{d y}{d x}=\sin 5 x \\
d y=\frac{1}{2} \sin 5 x \cdot d x \\
\int d y=\int \frac{1}{2} \sin 5 x \cdot d x \\
=-\frac{1}{2} \frac{\cos 5 x}{5}+c=-\frac{\cos 5 x}{10}+c
\end{array}\right.
$$

(iii) $\frac{d y}{d x}-5 x=0$

- Rearrange equation, $\quad \begin{aligned} & \frac{d y}{d x}=5 x \\ & d y=5 x \cdot d x \\ & \int d y=\int 5 x \cdot d x \\ & \therefore \quad y=\frac{5 x^{1+1}}{2}+c=\frac{5 x^{2}}{2}+c\end{aligned}$
(iv) $\frac{d y}{d x}=x^{2}-e^{\frac{x}{4}}$

Rearrange equation
Integrate both sides,

$$
\begin{aligned}
& d y=x^{2}-e^{\frac{x}{4}} \cdot d x \\
& \int d y=\int\left(x^{2}-e^{\frac{x}{4}}\right) \cdot d x \\
& \therefore \quad y \quad \frac{x^{2+1}}{3}-\frac{e^{\frac{x}{4}}}{\frac{1}{4}}+c=\frac{x^{3}}{3}-4 e^{\frac{x}{4}}+c
\end{aligned}
$$

(v) $x \frac{d y}{d x}=x^{2}+2 x-3$

- Rearrange and simplify equation,
- Integrate both sides,

$$
\begin{gathered}
d y=\frac{x^{2}+2 x-3}{x} \cdot d x=x+2-\frac{3}{x} \cdot d x \\
\int d y=\int\left(x+2-\frac{3}{x}\right) \cdot d x \\
\therefore \quad y=\frac{x^{1+1}}{2}+\frac{2 x^{0+1}}{1}-3 \ln |x|+c \\
=\frac{x^{2}}{2}+2 x-3 \ln |x|+c
\end{gathered}
$$

(vi) $y^{\prime} e^{-x}+e^{2 x}=0$

- Rearrange and simplify equation,
- Integrate both sides,

Law of Exponent: $e^{2 x-(-x)}=e^{3 x}$
$\int d y=\int-e^{3 x} \cdot d x$
$\therefore \quad y=\frac{-e^{3 x}}{3}+c$

Please click link below to refer example 3(i) video solution
https://www.youtube.com/watch?v=fWTr8IYJuaQ

1.3.2 VARIABLE SEPARABLE

If the given equation is in form $\frac{d y}{d x}=f(x) \cdot g(y)$ or $\frac{d y}{d x}=\frac{f(x)}{g(y)}$, and can be expressed and reduced as shown below,

$$
\frac{d y}{d x}=f(x) \cdot g(y)
$$

$$
\frac{1}{g(y)} \cdot d y=f(x) \cdot d x
$$

$\frac{d y}{d x}=\frac{f(x)}{g(y)}$

$$
g(y) \cdot d y=f(x) \cdot d x
$$

where variable ${ }^{x}$ appears on one side (right-side) and variable ${ }^{y}$ appears on the other side (left-side), such a differential equation is called a separable differential equation, where

$$
\int \frac{1}{g(y)} \cdot d y=\int f(x) \cdot d x
$$

$$
\int g(y) \cdot d y=\int f(x) \cdot d x
$$

? How to separate the variables correctly? You need to know the proper way to transit the variable expression correctly.

Solve the following differential equation $\frac{d y}{d x}=\frac{2 x}{y+1}$.

SOLUTION
$g(y)=y+1$ $f(x)=2 x$

- Separate the expression of x and y,

$$
y+1 \cdot d y=2 x \cdot d x
$$

- Integrate both sides,

$$
\begin{aligned}
& \int(y+1) \cdot d y=\int 2 x \cdot d x \\
& \therefore \frac{y^{2}}{2}+y=\frac{2 x^{2}}{2}+c \\
& \frac{y^{2}}{2}+y=x^{2}+c
\end{aligned}
$$

EXAMPLE 5

Solve the following differential equation $\frac{d y}{d x}=(1+x)(1+y)$

SOLUTION

- Separate the expression of x and y,
- Integrate both sides,

$$
\frac{1}{1+y} \cdot d y=1+x \cdot d x
$$

$$
\int \frac{1}{1+y} \cdot d y=\int(1+x) \cdot d x
$$

$$
\therefore \ln |1+y|=x+\frac{x^{2}}{2}+c
$$

Solve the following differential equation $\frac{d y}{d x}=x y-y$.

SOLUTION

- Separate the expression of x and y,
- Integrate both sides,

$$
\begin{aligned}
\frac{d y}{d x} & =y(x-1) \\
\frac{1}{y} \cdot d y & =(x-1) \cdot d x
\end{aligned}
$$

$$
\begin{aligned}
& \int \frac{1}{y} \cdot d y=\int(x-1) \cdot d x \\
& \ln |y|=\frac{x^{2}}{2}-x+c
\end{aligned}
$$

EXAMPLE 7

Solve the following differential equation $\frac{d y}{d x}=2 x^{3} \cdot e^{-2 y}$.

SOLUTION

- Separate the expression of x and y,

$$
e^{2 y} \cdot d y=2 x^{3} \cdot d x
$$

- Integrate both sides,

$$
\begin{aligned}
& \int e^{2 y} \cdot d y=\int 2 x^{3} \cdot d x \\
& \therefore \frac{e^{2 y}}{2}=\frac{2 x^{4}}{4}+c \\
& \frac{e^{2 y}}{2}=\frac{x^{4}}{2}+c
\end{aligned}
$$

Solve the following differential equation $\frac{d y}{d x}=\frac{y^{2}-x y^{2}}{x^{2} y+x^{2}}$.

SOLUTION

- Separate the expression of x and y,
- Integrate both sides,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{y^{2}(1-x)}{x^{2}(y+1)} \\
\frac{y+1}{y^{2}} \cdot d y & =\frac{1-x}{x^{2}} \cdot d x \\
\frac{y}{y^{2}}+\frac{1}{y^{2}} \cdot d y & =\frac{1}{x^{2}}-\frac{x}{x^{2}} \cdot d x \\
\frac{1}{y}+y^{-2} \cdot d y & =x^{-2}-\frac{1}{x} \cdot d x
\end{aligned}
$$

$$
\int\left(\begin{array}{r}
\left.\frac{1}{y}+y^{-2}\right) \cdot d y=\int\left(x^{-2}-\frac{1}{x}\right) \cdot d x \\
\therefore \ln |y|+\frac{y^{-1}}{-1}=\frac{x^{-1}}{-1}-\ln |x|+c \\
\ln |y|-\frac{1}{y}=\frac{-1}{x}-\ln |x|+c
\end{array}\right.
$$

*Note that, $\int \frac{1}{y} \cdot d y=\ln |y|$ but if $\int \frac{1}{y^{2}} \cdot d y \neq \ln \left|y^{2}\right|$

$$
\text { Therefore } \int \frac{1}{y^{2}} \cdot d y=\int y^{-2} \cdot d y=\frac{y^{-2+1}}{-2+1}=\frac{y^{-1}}{-1}=\frac{-1}{y}
$$

Please click link below to refer example $4 \& 8$ video solution
https://www.youtube.com/watch?v=8P8i2A6GZ6Y

Solve the following differential equation $\frac{d y}{d x}=e^{2 x-3 y}$.

SOLUTION

- Separate the expression of x and y,
- Integrate both sides,

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{e^{2 x}}{e^{3 y}} \\
e^{3 y} \cdot d y & =e^{2 x} \cdot d x
\end{aligned}
$$

$$
\int e^{3 y} \cdot d y=\int e^{2 x} \cdot d x
$$

$$
\therefore \frac{e^{3 y}}{3}=\frac{e^{2 x}}{2}+c
$$

1.3.3 SUBSTITUTION Y=UX

For any ordinary differential equation of $\frac{d y}{d x}=f(x, y)$, if $f(x, y)=f(\lambda x, \lambda y)$, where λ is the real number, the equation is called a homogeneous differential equation. This is determined by the fact that the total degree in x and y for each of the terms involved is the same.

Example: $\frac{d y}{d x}=\frac{x+3 y}{2 x}$

Condition of the equation:
(i) Total degree is 1 for x term and y term \rightarrow Homogeneous DE
(ii) The variables ${ }^{x}$ and ${ }^{y}$ cannot be separated \rightarrow Doesn't fit to solve using Variable Separable Method

Therefore, the key to solve every homogeneous equation is to substitute,

This converts the equation into a form which can be solved by separating the variables.
(2) How to identify that problem could be solved by Variable Separable technique?

Solve the following differential equation $\frac{d y}{d x}=\frac{x+3 y}{2 x}$.

SOLUTION

- Substitute $y \rightarrow v x$
and $\frac{d y}{d x} \rightarrow v+x \frac{d v}{d x}$
then simplify,
- Separate the expression of
x (right-side) and
v (left-side),
- Integrate both sides,
- Since $y=v x$
therefore substitute $v \rightarrow \frac{y}{x}$,

$$
\begin{aligned}
v+x \frac{d v}{d x} & =\frac{x+3(v x)}{2 x} \\
x \frac{d v}{d x} & =\frac{x+3 v x}{2 x}-v \\
& =\frac{x+3 v x-2 v x}{2 x} \\
& =\frac{x+v x}{2 x} \\
& =\frac{x(1+v)}{x(2)}=\frac{1+v}{2}
\end{aligned}
$$

$$
\frac{1}{1+v} \cdot d v=\frac{1}{2} \cdot \frac{1}{x} \cdot d x
$$

$$
\int \frac{1}{1+v} \cdot d v=\frac{1}{2} \int \frac{1}{x} \cdot d x
$$

$$
\ln |1+v|=\frac{1}{2} \ln |x|+c
$$

$\ln \left|1+\frac{y}{x}\right|=\frac{1}{2} \ln |x|+c$

Solve the following differential equation $\frac{d y}{d x}=\frac{x^{2}+y^{2}}{x y}$.

SOLUTION

- Substitute $y \rightarrow v x$
and $\frac{d y}{d x} \rightarrow v+x \frac{d v}{d x}$
then simplify,

$$
v+x \frac{d v}{d x}=\frac{x^{2}+(v x)^{2}}{x(v x)}
$$

$$
\begin{aligned}
x \frac{d v}{d x} & =\frac{x^{2}+v^{2} x^{2}}{x^{2} v}-v \\
& =\frac{x^{2}+v^{2} x^{2}-v^{2} x^{2}}{x^{2} v} \\
& =\frac{x^{2}(1)}{x^{2}(v)} \\
& =\frac{1}{v}
\end{aligned}
$$

- Separate the expression of x (right-side) and v (left-side),

$$
v \cdot d v=\frac{1}{x} \cdot d x
$$

$$
\begin{aligned}
\int v \cdot d v & =\int \frac{1}{x} \cdot d x \\
\frac{v^{2}}{2} & =\ln |x|+c
\end{aligned}
$$

- Since $y=v x$
therefore substitute $v \rightarrow \frac{y}{x}$,

$$
\begin{aligned}
\frac{1}{2}\left(\frac{y}{x}\right)^{2} & =\ln |x|+c \\
\frac{y^{2}}{2 x^{2}} & =\ln |x|+c
\end{aligned}
$$

Solve the following differential equation $\left(x^{2}+x y\right) \frac{d y}{d x}=x y-y^{2}$.

SOLUTION

- Rearrange equation,
- Substitute $y \rightarrow v x$
and $\frac{d y}{d x} \rightarrow v+x \frac{d v}{d x}$,
then simplify,
- Separate the expression of x (right-side) and v (left-side),
- Integrate both sides,

$$
\frac{d y}{d x}=\frac{x y-y^{2}}{x^{2}+x y}
$$

$$
v+x \frac{d v}{d x}=\frac{x(v x)-(v x)^{2}}{x^{2}+x(v x)}
$$

$$
\begin{aligned}
v+x \frac{d v}{d x} & =\frac{x^{2} v-v^{2} x^{2}}{x^{2}+x^{2} v} \\
& =\frac{x^{2}\left(v-v^{2}\right)}{x^{2}(1+v)}
\end{aligned}
$$

$$
x \frac{d v}{d x}=\frac{v-v^{2}}{1+v}-v
$$

$$
=\frac{v-v^{2}-v-v^{2}}{1+v}
$$

$$
=\frac{-2 v^{2}}{1+v}
$$

$$
\frac{1+v}{v^{2}} \cdot d v=-2 \cdot \frac{1}{x} \cdot d x
$$

$$
\begin{aligned}
\int\left(\frac{1}{v^{2}}+\frac{v}{v^{2}}\right) \cdot d v & =-2 \int \frac{1}{x} \cdot d x \\
\int\left(v^{-2}+\frac{1}{v}\right) \cdot d v & =-2 \int \frac{1}{x} \cdot d x \\
\frac{-1}{v}+\ln |v| & =-2 \ln |x|+c
\end{aligned}
$$

- Since $y=v x$
therefore substitute $v \rightarrow \frac{y}{x}$,

$$
\frac{-1}{\left(\frac{y}{x}\right)}+\ln \left|\frac{y}{x}\right|=-2 \ln |x|+c
$$

$$
\frac{-x}{y}+\ln \left|\frac{y}{x}\right|=-2 \ln |x|+c
$$

1.3.4 INTEGRATING FACTOR

The differential equation of the form $\frac{d y}{d x}+P y=Q$ is called linear equation of the first order, where P and Q are constants or functions of x. Any such equation can be solved by multiplying both sides by an integrating factors (IF). These are steps in solving first order differential equation by using Integrating Factor.

| Write the given
 en
 equation in the
 form of: |
| :--- | :--- | :--- |
| $\frac{d y}{d x}+P y=Q$ |

Solve the following differential equation $\frac{d y}{d x}+5 y=e^{2 x}$

SOLUTION

- Form $\frac{d y}{d x}+P y=Q$,

$$
\begin{aligned}
& \frac{d y}{d x}+5 y=e^{2 x} \\
& \Rightarrow \quad P=5, Q=e^{2 x}
\end{aligned}
$$

- Find IF by substitute P,
- Solve using formula, by substitute Q and $I F$,

$$
I . F=e^{\int P(x) d x}=e^{\int 5 \cdot d x}=e^{5 x}
$$

$$
y \cdot I F=\int Q \cdot . I F \cdot d x
$$

$$
\begin{aligned}
y \cdot e^{5 x} & =\int e^{2 x} \cdot e^{5 x} \cdot d x \\
& =\int e^{7 x} d x \\
y \cdot e^{5 x} & =\frac{e^{7 x}}{7}+c \\
\therefore y & =\frac{e^{7 x}}{7 e^{5 x}}+\frac{c}{e^{5 x}}
\end{aligned}
$$

Solve the following differential equation $x \frac{d y}{d x}+y=x^{3}$

SOLUTION

- Form $\frac{d y}{d x}+P y=Q$,

$$
\left\{\begin{array}{l}
\frac{d y}{d x}+\frac{y}{x}=\frac{x^{3}}{x} \\
\frac{d y}{d x}+\frac{y}{x}=x^{2} \\
\Rightarrow P=\frac{1}{x}, Q=x^{2}
\end{array}\right.
$$

$\underline{\Delta}=e^{\int P(x) d x}=e^{\int \frac{1}{x} \cdot d x}=e^{\ln |x|}=x$
One of the Rule of exponent, $e^{\ln a}=a$

- Solve using formula by substitute Q and $I F$,

$$
\begin{aligned}
& y=\int Q \cdot I F \cdot d x \\
& y \cdot x=\int x^{2} \cdot x d x \\
& y x=\int x^{3} d x \\
& y x=\frac{x^{4}}{4}+c \\
& \therefore y=\frac{x^{4}}{4 x}+\frac{c}{x}
\end{aligned}
$$

EXAMPLE 15 Solve the following differential equation $(x-2) \frac{d y}{d x}-y=(x-2)^{3}$

SOLUTION

- Form $\frac{d y}{d x}+P y=Q$,
- Then identify P and Q,
- Find IF by substitute P,
- Solve using formula, by substitute Q and $I F$,

$$
\begin{gathered}
\frac{(x-2)}{(x-2)} \frac{d y}{d x}-\frac{y}{(x-2)}=\frac{(x-2)^{3}}{(x-2)} \\
\frac{d y}{d x}-\frac{y}{(x-2)}=(x-2)^{2} \\
\Rightarrow P=\frac{-1}{x-2}, Q=(x-2)^{2}
\end{gathered}
$$

$$
\begin{aligned}
I . F=e^{\int P(x) d x}=e^{-\int \frac{1}{x-2} \cdot d x} & =e^{-\ln |x-2|} \\
& =e^{\ln |x-2|^{-1}} \\
\hat{A} & =(x-2)^{-1} \\
& =\frac{1}{x-2}
\end{aligned}
$$

$$
\begin{aligned}
y \cdot I F & =\int Q \cdot I F \cdot d x \\
y \cdot \frac{1}{x-2} & =\int(x-2)^{2} \cdot \frac{1}{x-2} \cdot d x \\
y \cdot \frac{1}{x-2} & =\int(x-2) \cdot d x \\
\frac{y}{x-2} & =\frac{x^{2}}{2}-2 x+c
\end{aligned}
$$

Solve the following differential equation $\frac{d y}{d x}-y=x$.

SOLUTION

- Form $\frac{d y}{d x}+P y=Q$

$$
\begin{aligned}
& \frac{d y}{d x}-y=x \\
& \Rightarrow P=-1, Q=x
\end{aligned}
$$

- Find IF by substitute P,
- Solve using formula,
- by substitute Q and $I F$,

$$
\begin{gathered}
I . F=e^{\int P(x) d x} \\
=e^{\int-1 \cdot d x}=e^{-x} \\
y \cdot I F=\int Q \cdot . I F \cdot d x \\
y \cdot e^{-x}=\int x \cdot e^{-x} \cdot d x \\
\text { Integration of products } \\
\text { (Between polynomial and exponent) }
\end{gathered}
$$

By using Integration By Parts Method
(for LHS equation),

$$
y \cdot e^{-x}=u v-\int v d u
$$

$$
\begin{aligned}
& u=x \Rightarrow \frac{d u}{d x}=1 \Rightarrow d u=d x \\
& d v=e^{-x} d x \Rightarrow v=\int e^{-x} d x=\frac{e^{-x}}{-1}=-e^{-x}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\begin{aligned}
y \cdot e^{-x} & =(x)\left(-e^{-x}\right)-\int\left(-e^{-x}\right)(d x) \\
& =-x e^{-x}+\frac{e^{-x}}{-1}+c \\
& =-x e^{-x}-e^{-x}+c \\
\therefore y & =\frac{-x e^{-x}}{e^{-x}}-\frac{e^{-x}}{e^{-x}}+\frac{c}{e^{-x}} \\
y & =-x-1+\frac{c}{e^{-x}}
\end{aligned}
\end{aligned}
$$

TEST YOURSELF Solve the following ordinary differential equation.
? What is the suitable method for the following Ordinary Differential Problems? How to identify the suitable method?
i.

$$
\frac{d y}{d x}=8 x^{3} y^{2}
$$

$$
\frac{d y}{d x}=\frac{y}{x}+\frac{x}{y}
$$

c. $\frac{d y}{d x}+2 x y=x$
d. $x \frac{d y}{d x}=\frac{4 y}{y-3}$
e.

$$
\frac{d y}{d x}+2 y=e^{2 x}
$$

f.

CHECK YOUR

 ANSWERa.

$$
-\frac{1}{y}=2 x^{4}+c
$$

g.
I. $x \frac{d y}{d x}+y=x^{3}$

$$
(\ln y)-y=-\frac{1}{x}+\ln x+c
$$

b.

$$
\frac{y^{2}}{2 x^{2}}=\ln x+c
$$

h. $y=-2 \cos ^{2} x+C$
i. $-\ln \left(\left(\frac{y}{x}\right)^{2}+1\right)=\ln x+c$
j. $\quad 2 y^{3}-3 y^{2}=3 x^{2}-6 \ln x+C$
k. $(\ln y)-y=-\frac{1}{x}+\ln x+c$
$-\frac{1}{y}=x^{3}+c$
g.

$$
x^{2}(1-y) \frac{d y}{d x}=(1+x) y
$$

h.
$\frac{d y}{d x}+y \tan x=\sin 2 x$
i.
$2 x y \frac{d y}{d x}=y^{2}-x^{2}$
j.

$$
x y \frac{d y}{d x}=\frac{\left(x^{2}-1\right)}{(y-1)}
$$

k.

$$
x^{2}(1-y) \frac{d y}{d x}=(1+x) y
$$

$$
\frac{d y}{d x}=3 x^{2} y^{2}
$$

c. $\quad \frac{-\ln (1-2 y)}{2}=\frac{x^{2}}{2}+c$
I.
$y=\frac{x^{3}}{4}+C$

1.4 SECOND ORDER OF DIFFERENTIAL EQUATIONS

The general form of second order differential equation with constant is
$a \frac{d^{2} y}{d x^{2}}+b \frac{d y}{d x}+c y=0$ and the Auxiliary Equation is

$a m^{2}+b m+c=0$
where a, b and c are constants with $a>0$ and $m^{2}=\frac{d^{2} y}{d x^{2}}, m=\frac{d y}{d x}, \quad y=1$

1.4.1 SOLVE GENERAL SOLUTION OF $2^{\text {ND }}$ ODE

Solve the Second Order Differential Equation have:

(a) Real and Different Roots where $b^{2}>4 a c$
(b) Real and Equal Roots where $b^{2}=4 a c$
(c) Imaginary Roots where $\mathrm{b}^{2}<4 \mathrm{ac}$

Nature of Roots
Condition
General Solution
Roots

$$
m=m_{1}
$$

Real and Different Roots $\quad b^{2}-4 a c>0 \quad y=A e^{m_{1} x}+B e^{m_{2} x}$

$$
m=m_{2}
$$

Real and Equal Roots $\quad b^{2}-4 a c=0 \quad y=e^{m x}(A+B x) \quad m=m_{1}=m_{2}$

Complex Roots?

$$
b^{2}-4 a c<0 \quad y=e^{\alpha x}(A \cos \beta x+B \sin \beta x) \quad m=\alpha \pm j \beta
$$

Finding Root(s)

? What type of roots will use factorization or quadratic formula methods?

These are steps in solving second order differential equation

Please click link below to refer introduction second order of differential equation https://youtu.be/AhlOpl9aJuU

Determine the general solution for $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0$

SOLUTION

- Form Auxiliary Equation, $\quad m^{2}+5 m+6=0$
- Nature and condition,
- Find the root(s),
- General Solution, (substitute m_{1} and m_{2})

Real and Different Roots,

$$
b^{2}-4 a c=(5)^{2}-4(1)(6)=1>0
$$

By using factorization,

$$
(m+3)(m+2)=0
$$

$$
\Rightarrow m_{1}=-3, m_{2}=-2
$$

$$
y=A e^{m_{1} x}+B e^{m_{2} x}
$$

$$
\therefore \quad y=A e^{-3 x}+B e^{-2 x}
$$

or,

$$
\begin{aligned}
& y=A e^{-2 x}+B e^{-3 x} \\
& \left(\text { for } m_{1}=-2 \text { and } m_{2}=-3\right)
\end{aligned}
$$

Please click link below to refer example 17 video solution
https://youtu.be/zfVTgvzzsQ0

Determine the general solution for $y^{\prime \prime}+6 y^{\prime}+9 y=0$

SOLUTION

- Form Auxiliary Equation,
- Nature and condition,
- Find the root(s),
- General Solution, (substitute m)

$$
m^{2}+6 m+9=0
$$

Real and Equal Roots,

$$
b^{2}-4 a c=(6)^{2}-4(1)(9)=0
$$

By using factorization,

$$
\begin{aligned}
& (m+3)(m+3)=0 \\
& \Rightarrow m_{1}=m_{2}=m=-3
\end{aligned}
$$

$$
y=e^{m x}(A+B x)
$$

$$
\therefore \quad y=e^{-3 x}(A+B x)
$$

Please click link below to refer example 18 video solution https://youtu.be/GXp4zvDrGHM

Determine the general solution for $2 \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0$

SOLUTION

- Form Auxiliary

Equation,

- Nature and condition,
- Find the root(s),
- General Solution, (substitute α and β)

Complex Roots,
$b^{2}-4 a c=(1)^{2}-4(2)(1)=-7<0$
(cannot be factorized)?
By using Quadratic Formula,

$$
\begin{aligned}
m & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& =\frac{-1 \pm \sqrt{(1)^{2}-4(2)(1)}}{2(2)}
\end{aligned}
$$

$2 m^{2}+m+1=0$

$$
=\frac{-1 \pm \sqrt{-7}}{4}
$$

$=\frac{-1 \pm \sqrt{-7}}{4}$

$$
=\frac{-1 \pm \sqrt{7} \sqrt{-1}}{4}
$$

$=\frac{-1 \pm \sqrt{7} \sqrt{-1}}{4}$

$$
=\frac{-1}{4} \pm \frac{\sqrt{7}}{4} i
$$

$=\frac{-1}{4} \pm \frac{\sqrt{7}}{4} i$

$$
=-0.25 \pm 0.661 i
$$

$=-0.25 \pm 0.661 i$

$$
\Rightarrow \alpha=-0.25, \beta=0.66
$$

$\Rightarrow \alpha=-0.25, \beta=0.66$
$y=e^{\alpha x}(A \cos \beta x+B \sin \beta x)$
$\therefore y=e^{-0.25 x}(A \cos 0.66 x+B \sin 0.66 x)$

Please click link below to refer example 19 video solution https://youtu.be/OIhawDpu6RI

Solve the following differential equations:
a. $\frac{d^{2} y}{d x^{2}}-10 \frac{d y}{d x}+41 y=0$
b. $y^{\prime \prime}-4 y^{\prime}-4 y=0$
c. $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}-3 y=0$
d. $2 \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}-2 y=0$
e. $\frac{d^{2} y}{d x^{2}}+5 \frac{d y}{d x}+6 y=0$
f. $\frac{d^{2} y}{d x^{2}}-5 \frac{d y}{d x}+6 y=0$
g. $\frac{d^{2} y}{d x^{2}}+10 \frac{d y}{d x}+25 y=0$
h. $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=0$
i. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}-8 y=0$
j. $2 y^{\prime \prime}+4 y^{\prime}+3 y=0$
k. $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+9 y=0$
I. $\frac{d^{2} y}{d x^{2}}-2 \frac{d y}{d x}+10 y=0$
a. $\quad y=e^{5 x}(A \cos 4 x+B \sin 4 x)$
b. $y=A e^{4.828 x}+B e^{-0.828 x}$
c. $y=A e^{x}+B e^{-3 x}$
d. $y=A e^{-0.5 x}+B e^{2 x}$
e. $y=A e^{-2 x}+B e^{-3 x}$
f. $y=A e^{3 x}+B e^{2 x}$
g. $y=e^{-5 x}(A+B x)$
h. $y=e^{-2 x}(A+B x)$
i. $y=A e^{4 x}+B e^{-2 x}$
j. $\quad y=e^{-x}(A \cos 0.707 x+B \sin 0.707 x)$
k. $y=e^{-2 x}(A \cos \sqrt{5} x+B \sin \sqrt{5} x)$
I. $y=e^{x}(A \cos 3 x+B \sin 3 x)$

1.4.2 SOLVE PARTICULAR SOLUTION OF $2^{\text {ND }}$ ODE

EXAMPLE 20

Obtain the specific solution for the following differential equation:

$$
\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-4 y=0, \text { given that when } x=0, y=1 \text { and } \frac{d y}{d x}=0 .
$$

SOLUTION

- Form Auxiliary Equation,
$m^{2}+3 m-4=0$

Real and Different Roots, $b^{2}-4 a c=3^{2}-4(1)(-4)=25$

By using factorization, $(m+4)(m-1)=0, m=-4,1$
$y=A e^{-4 x}+B e^{x}$
When $x=0, y=1$,
$1=A+B \ldots \ldots \ldots$
When $x=0, \frac{d y}{d x}=0$
$\frac{d y}{d x}=-4 A e^{-4 x}+B e^{x}$
$0=-4 A+B$
$4 \mathrm{~A}=\mathrm{B}$
Substitute $\mathrm{B}=4 \mathrm{~A}$ in (1),
$1=A+4 A$
$1=A+4 A$
$1=5 A$
$A=\frac{1}{5}$
$B=4\left(\frac{1}{5}\right)$
$B=\frac{4}{5}$
$y=\frac{1}{5} e^{-4 x}+\frac{4}{5} e^{x}$

Solve the following equation in which s is the displacement of an object at time t,

$$
\frac{d^{2} s}{d t^{2}}-4 \frac{d s}{d t}+4 s=0 . \text { Given that } s=1, \frac{d s}{d t}=3 \text { when } t=0
$$

SOLUTION

- Form Auxiliary Equation,
- Nature and condition,
- Find the root(s),
- General Solution (substitute m),
- Condition $s(0)=1$
- Condition $\frac{d s}{d t}(0)=3$
- Particular Solution,
$m^{2}-4 m+4=0$

Real and Equal Roots, $b^{2}-4 a c=(-4)^{2}-4(1)(4)=0$

By using factorization, $(m-2)(m-2)=0 \quad \Rightarrow m=2$
$y=e^{m x}(A+B x)$
$\therefore \quad y=e^{2 x}(A+B x) \Rightarrow s=e^{2 t}(A+B t)$?

When $t=0$,

$$
\begin{aligned}
s & =e^{2(0)}(A+B(0)) \\
1 & =1(A) \quad \Rightarrow \therefore A=1
\end{aligned}
$$

Differentiate s using product rule, ? A
$u=e^{2 t} \Rightarrow u^{\prime}=2 e^{2 t}$ and $v=A+B t \Rightarrow v^{\prime}=B$
$\frac{d s}{d t}=u v^{\prime}+v u^{\prime}=B e^{2 t}+2 e^{2 t}(A+B t)$
When $t=0$, and $A=1$,

$$
\begin{aligned}
\frac{d s}{d t} & =B e^{2 t}+2 e^{2 t}(A+B t) \\
3 & =B e^{2(0)}+2 e^{2(0)}(1+B(0)) \\
3 & =B+2 \quad \Rightarrow \therefore B=1
\end{aligned}
$$

Substitute $A=1$ and $B=1$ into s
$s=e^{2 t}(A+B t) \Rightarrow s=e^{2 t}(1+t)$

Obtain the specific solution for the following differential equations
a. $\quad \frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$, given that $x=0, y=\frac{7}{2}$ and $\frac{d y}{d x}=9$
b. $\frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}-4 y=0$, given that $y=1, \frac{d y}{d x}=0$ when $x=0$
c. $\frac{d^{2} y}{d x^{2}}-3 \frac{d y}{d x}+2 y=0$, given that $y=\frac{7}{2}, \frac{d y}{d x}=9$ when $x=0$

CHECK YOUR ANSWER
a. $y=\frac{11}{2} e^{2 x}-2 e^{x}$
b. $y=\frac{1}{5} e^{-4 x}+\frac{4}{5} e^{x}$
c. $y=\frac{11}{2} e^{2 x}-2 e^{x}$

