POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

AUTOMATIC KITCHEN FAN

MUHAMMAD AZRI BIN MOHD ZAIN (08DJK20F1001)

JABATAN KEJURUTERAAN ELEKTRIK

SESI 1:2022/2023

POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

AUTOMATIC KITCHEN FAN

MUHAMMAD AZRI BIN MOHD ZAIN (08DJK20F1001)

This report was submitted to the Department of Electrical Engineering as partial fulfillment of the award conditions

Diploma of Electrical Engineering

JABATAN KEJURUTERAAN ELEKTRIK

SESI 1:2022/2023

CONFIRMATION OF THE PROJECT					
The project report titled "AUTOMATIC KITCHEN FAN has been submitted,					
reviewed and verified as a fu	lfills the conditions and requirements of the Project				
Writing as stipulated					
Checked by:					
Supervisor's name NOOR	:WAN NOR HIDAYAH BINTI WAN MOHAMED				
Supervisor's signature:					
Date :					
Verified by:					
Project Coordinator name	:				
Signature of Coordinator	:				
Date :					

"I acknowledge this vexplained to our source	work is my own work except the excerpts I have already ce"
1. Signature	:
Name	: MUHAMMAD AZRI BIN MOHD ZAIN
Registration Number	: 08DJK20F1001
Date	:

DECLARATION OF ORIGINALITY AND OWNERSHIP

AUTOMATIC KITCHEN FAN

Me, <u>MUHAMMAD AZRI BIN MOHD ZAIN(NO KP: 020326-03-0751)</u> is a student <u>Diploma Kejuruteraan Elektrik, Politeknik Sultan Salahuddin Abdul Aziz Shah</u>, which is addressed at <u>Persiaran Usahawan.Politeknik Sultan Salahuddin Abdul Aziz Shah.40150 Shah Alam.Selangor.</u>

(Hereafter referred to as 'the Polytechnic').).

- 2. I acknowledge that the 'Above Project' and the intellectual property in it are the result of my original work/design without taking or copying any intellectual property from other parties..
- 3. I agree to allow ownership of the intellectual property of 'the Project' to 'the Polytechnic' to meet the requirements to obtain the award **Diploma Keiuruteraan Elektrik** to me.

Made and it truth recognized by;	
MUHAMMAD AZRI BIN MOHD ZAIN)
(Identification Card: 020326-03-0751)) MUHAMMAD AZRI BIN MOHD ZAIN
In front of me, WAN NOR HIDAYAH BINTI WAN MOHAMED NOOR(821125-14-5106) As a project supervisor on the date:) WAN NOR HIDAYAH BINTI WAN MOHAMED NOOR
	•

ACKNOWLEDGEMENTS

I have taken efforts in this project. However, it would not have been possible without the kind support and help of many individuals and organizations. I would like to extend my sincere thanks to all of them. I am highly indebted to PUAN WAN NOR HIDAYAH BINTI WAN MOHAMED NOOR for their guidance and constant supervision as well as for providing necessary information regarding the project & also for their support in completing the project.

I would like to express my gratitude towards my parents & member of POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH for their kind cooperation and encouragement which help me in completion of this project. I would like to express my special gratitude and thanks to industry persons for giving me such attention and time.

My thanks and appreciations also go to my colleague in developing the project and people who have willingly helped me out with their abilities.

ABSTRACT

Cooking is one of the main sources of indoor air pollutants, and may even exceed the contribution from external sources. Cooking can be a tiring experience if thekitchen is not properly ventilated. Despite good ventilation sometimes we need an exhaust fan to moderate the temperature in the kitchen during cooking. But when we are too busy cooking, we often forget the fan and end up cooking without it. A simple solution to this problem is to use a circuit to automate the exhaust fan in the kitchen to automatically turn on when cooking starts. This automatic exhaust fan circuit uses a temperature sensor to monitor the atmospheric temperature and turn on or OFF the fan based on temperature. The results of the study prove that there are advantages by this fan system .

ABSTRAK

Memasak adalah salah satu sumber utama pencemar udara dalaman, malah mungkin melebihi sumbangan daripada sumber luar. Memasak boleh menjadi pengalaman yang memenatkan jika dapur tidak mempunyai pengudaraan yang betul. Walaupun pengudaraan yang baik kadangkala kita memerlukan kipas ekzos untuk menyederhanakan suhu di dapur semasa memasak. Tetapi apabila kita terlalu sibuk memasak, kita sering melupakan kipas dan akhirnya memasak tanpanya. Penyelesaian mudah untuk masalah ini ialah menggunakan litar untuk mengautomasikan kipas ekzos di dapur untuk dihidupkan secara automatik apabila memasak bermula. Litar kipas ekzos automatik ini menggunakan sensor suhu untuk memantau suhu atmosfera dan menghidupkan atau mematikan kipas berdasarkan suhu. Hasil kajian membuktikan terdapat kelebihan sistem kipas ini .

TABLE OF CONTENTS

CHAPTER	CONTENT	PAGE
	CONFIRMATION OF THE PROJECT	i
	DECLARATION OF ORIGINALITY AND OWNERSHIP	iii
	ACKNOWLEDGEMNETS	iv
	ABSTRACT	v
	ABSTRAK	iv
	TABLE OF CONTENTS	vii
	LIST OF TABLES	X
	LIST OF FIGURES	xi
	LIST OF SYMBOLS	xii
	LIST OF ABBREVIATION	xiii
	CHAPTER 1	
1	INTRODUCTION	
	1.1 Introduction	1
	1.2 Background Research	1
	1.3 Problem Statement	2
	1.4 Research Objectives	2
	1.5 Scope of Research	2
	1.6 Project Significance	2
	1.7 Chapter Summary	3
	CHAPTER 2	
2	LITERATURE REVIEW	
	2.1 Introduction	4
	2.2 Previous Research	4
	2.3Control system	11
	2.4Chapter Summary	12

	CHAPTER 3	
3	RESEARCH METHODOLOGY	
	3.1 Introduction	13
	3.2 Project Design and Overview	13
	3.3 Project Hardware	15
	3.4 Project Software	18
	3.5 Prototype Development	19
	3.6 Sustainability elements in the design	21
	3.7 Chapter summary	21
	CHAPTER 4	
4	RESULT AND DISCUSSION	
	4.1 Introduction	23
	4.2 Result and Analysis	23
	4.3 Discussion	24
	4.4 Chapter Summary	24
	CHAPTER 5	
5	CONCLUSION AND SUGGESTION	
	5.1 Introduction	25
	5.2 Conclusion	25
	5.3 Suggestions for future work	25
	5.4 Chapter Summary	26
6	CONCLUSION AND SUGGESTION	
	6.1 Introduction	27
	6.2 Ghant Chart and Activities of project	28
	6.3 Milestone	29
	6.2 Cost and budgeting	30
	6.3 Chapter Summary	31
	REFERENCES	22
	APPENDICES	23

LIST OF TABLE

NO. TABLE	TITLE	PAGE	
2.1	Types Of Air Suction Fan	10	
4.1	Cost Of Project	30	

LIST OF FIGURE

NO. FIGURE	TITLE	PAGE
2.1	Block Diagram Of open loop and close loop.	11
3.1	Flowchart of operation system	14
3.2	Circuit Diagram	15
3.3	Circuit Operation	18
3.4	Flowchart System	19
3.5	Prototype	20
3.6	Mechanical Design	21
4.1	Result	23
6.1	Ghant Chart	28
6.2	Milestone	29

LIST OF SYMBOLS

Simbol

f Frekuensi

m Jisim

P Tekanan

r Jejari

LIST OF ABBREVIATIONS				
CeTRI Innovation	Centre for Telecomunication Research and			

CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Automatic Kitchen Fan system project is a project for air freshener system in the kitchen. When we cook smoke will fill the kitchen space. With this project we do not have to worry because when the sensor can detect smoke or gas automatically the fan will work to remove the smoke or gas which smells better because of the system of the project. The air in the kitchen will always be fresh and besides that can save electricity from the fan always operating.

1.2 BACKGROUND RESEARCH

SMART KITCHEN WITH IOT

(source: International Journal of Research in Advent Technology)

The results of the study found that the design of the gas leakage monitoring system is recommended for home security. The system detects LPG leaks and inform the consumer about the leak via SMS and as an emergency measure the system will turn off the power supply, while activating the alarm. An additional advantage of the system is that continuously monitor the level of LPG found in the cylinder uses a load sensor and if the gas level is reached below the gas threshold limit of about 2kg so the user can replace the old cylinder with a new inlet time and automatically order cylinders using a GSM module . The device ensures safety and prevents shortness of breath and explosion due to gas leak. The project has the concept of detecting the presence of gas.

1.3 PROBLEM STATEMENT

First,Being Smoke fills the kitchen space while cooking .Next,breathing will be disturbed due to smoke filling the kitchen space and difficulty breathing.Next discomfort for cooking and health will be affected due to constantly inhaling dirty air.

1.4 RESEARCH OBJECTIVE

The main objective of this Project is make air in the kitchen always fresh. More specifically the principle objective of this research are to inhale the smoke that is in the kitchen while cooking and released out of the house and smell fragran. Next, to make the air in the kitchen will always be fresh and can save electricity from the fan is always rotating

1.5 SCOPE OF RESEARCH

This Project is focusing to design a system to inhale a gas in the kitchen. The emphasis is to the make air in the kitchen will always be fresh and can save electricity too. This project is using gas sensor, arduino relay and fan.

1.6 PROJECT SIGNIFICANT

Based on the study, this project has several significances, among of them are Humidity Control, Controlling Steam, Smoke and Smell, Gas and Smoke Removal, Heat Removal, Maintain health and Walls and Fabrics in good condition

1.7 CHAPTER SUMMARY

Currently, Cooking is one of the main sources of indoor air pollutants. Overall in this chapter such as background study, problem statement, study objectives, scope of study and importance of the project have been discussed to address the issue Smoke fills the kitchen space during cooking Breathing will be disturbed due to smoke filling the kitchen space and breathing difficulties discomfort for cooking and health will be affected because it constantly inhales dirty air.

CHAPTER 2 LITERATURE REVIEW

2.1 INTRODUCTION

This chapter is provided description of literature review done regards to the project title of design and fabrication for cat feeder. The literature review started with the other product of cat feeder that is widely used. There are several products that are common in the production of cat feeder. With the explanation of each product, the advantages and disadvantages can be seen in those products and can help to make upgrade for another better product

2.2 SMART KITCHEN (Literature Review Topic 1)

NO	TITLE/AUTHOR	OBJECTIVE	METHOD	RESULT
1	> Smart	Design of gas	. The	Monitoring
	kitchen	leakage monitoring	system	the all
	using IoT	system for home	detects	sensors and
	Mr. Gaurav V	safety.The device	LPG leaks	its value for
	Tawale-Patil,	ensures safety and	and inform	safty
	Miss. Kalyani	prevents	the	detection of
	H Kulkarni,	shortness of breath	consumer	gas
	Miss. Pooja U	and explosion due	about the	leakage,tem
	Kuwad,	to gas leak	leak	perature
	Miss.Pooja R		via SMS	and
	Pawar		and as an	Humidity of
	Department of		emergency	room,and
	Information		measure	daily usage
	Technology,		the system	of system to
	Vishwakarma		will	the user.
	Institute of		turn off the	Automatic
	Information		power	Booking for
	Technology,		supply,	gas refill
	Savitribai		while	
	Phule Pune		activating	
	University,		the alarm	
	India.			

NO	TITL	E/AUTHOR	OBJECTIVE	METHOD	RESULT
2	>	Smart	The purposes of this	Units to	The Smart
		kithen	project is to detect	be	Kitchen
	>	M. A. M	gas levels and show	measured,	System
		Azran	warnings	materials	consists of
		Faculty of	accurately.	and	three main
		Computing,	To connect the data	gas levels	components
		Sri Lanka	from the kitchen	are	such as
		Institute of	and present it	measured	Load cells,
		Information	through an android	using a	Android
		Technology	application to the	load cell.	apps for
		Colombo	user.	This data is	users and
				sent to the	budgets
				hosted	system for
				server that	home users.
				contains	Primarily,
				the	the
				database.	container is
				The	designed
				the budget	for reading
				component	and sending
				is	weight level
				associated	details. This
				with this	data with
				and so are	gas levels
				the gas	to read and
				centerswhi	sent to the
				ch will	main
				accept	server.
				orders	
				according	
				to the gas	
				level. Users	
				will can	
				view data	
				from	
				android	
				application	
				S.	

NO	TITLE/AUTHOR	OBJECTIVE	METHOD	RESULT
3	> N. A. A.	To remove heat	The	. To process
	Hadi	and smoke in the	temperatur	analog
	>	kitchen is detected	e sensor	signals,
	Centre for	by smoke	detects the	microcontro
	Telecommunicatio	detectors.install	ambient	llers have
	n Research and	safety precautionary	temperatur	analog to
	Innovation	elements to warn the	e and it is	digital
	(CeTRI),	public.buzzer is	displayed	converters
	Faculty of	installed to inform	on the	that convert
	Electronic and	people when the	LCD. The	analog
	Computer	temperature reaches	motor	signals to
	Engineering,	a maximum value	speed is	digital. The
	Universiti Teknikal		controlled	LM35
	Malaysia Melaka		using	temperature
			PWM	sensor
			technique	connected
			according	to the
			to the	analog port
			ambient	acquires the
			temperatur	environmen
			e.	t

NO	TITLE/AUTHOR	OBJECTIVE	METHOD	RESULT
4	Navindran	This project	IoT Based	Initially, the
	A/L	objective to design	Smart	exhaust fan
	Alagari1 ,	and build an IoT	Exhaust	was OFF,
	Jais Lias1*	based smart exhaust	Fan is well-	when
	1Faculty of	fan which can turn	designed,	flammable
	Electrical	ON and OFF	easy and	gas from
	and	automatically	affordable	lighter
	Electronic	depend on	for home	affect the
	Engineering	temperature and air	user. This	surrounding
	, Universiti	quality. Then, the	project is	air quality
	Tun Hussein	system is able to	an IoT	level inside
	Onn	measure and record	based	the acrylic
	Malaysia,	data for data	exhaust fan	house
	86400 Parit	collection of	which can	model. The
	Raja, Batu	temperature and air	control and	exhaust fan
	Pahat,	quality in a space	monitor the	is turned
	Johor,	and finally, the IoT	performanc	ON when
	MALAYSI	system was	e of the	the air
	A	implemented in the	exhaust fan.	quality level
		prototype.	This device	was
			can help the	exceeded more than
			user to	
			monitor, control and	required level which
			can reduce	is 149 Ppm.
				The exhaust
			power consumptio	fan turn
			n because it	OFF when
			works	the
			automatical	poisonous
			ly.	harmful gas
			19.	removed
				from the
				surrounding
				and the
				surrounding
				air inside
				the acrylic
				house
				model is
				maintained
				to its
				requiredair
				quality level

NO	TITLE/AUTHOR	OBJECTIVE	METHOD	RESULT
5		To build an	Functionali	The project
	> AUTOMA	automatic fan	ty check on	needs a
	TIC FAN	controller based on	temperatur	very careful
	CONTROL	temperature sensor.	e sensor	study and
	LER	To create detection		consistent
	BASED ON	system that aims to		work.
	TEMPERA	detect human"s		Based from
	TURE	motion appearance		the result,
	SENSOR	To implement a		the
	AND	controller based		prototype
	REACTIV	model to count		managed to
	ATED	number of persons		be finished
	SYSTEM	visiting particular		on time set.
	➤ By Nu	room Keypad		There will
	Mohd	controller for user		be many
	Fadzli Bir	purpose		obstacle
	Nordzi			that need to
	Submitted			be handled
	to the			in
	Electrical &			accomplish
	Electronics			ed the task.
	Engineering			The result
	Programme			proves out
	in Partial			the
	Fulfillment			capabilities
	of the			the entire
	Requiremen			sensor like
	ts for the			LM35
	Degree			sensor,
	Bachelor of			Ultrasonic
	Engineering			sensor and
	(Electrical &			Passive
	Electronics			Infrared Sensor
	Engineering			(PIR) by
) Universiti			using C
	Teknologi			programmi
	PETRONA			ng on
	S Bandar			PIC16f877
	Seri			A.
	Iskandar			=
	31750			
	Tronoh			
	Perak Darul			
	Ridzuan			

2.2.1 PREVIOUS RESEARCH (Subtopic Literature Review Topic 1)

Security plays a major role in today's world and rightly so necessary so that a good security system is implemented in place of education and employment. This work is modifying existing safety models used in the home. Main objective work is design in microcontroller detection and warning system. Gases such as LPG and propane are detected and displayed every second in the LCD display. If these gases exceed normal levels then an a warning message is sent to the authorized person. The the advantages of this automatic detection and warning system compared to the manual method is that it offers a fast response timing and accurate detection of emergencies and beyond leading to a faster spread of critical situations.

Based on the study of the history of air suction fans there are several types of air suction fan

Table 0.1: Types of air suction fan

PANASONIC FV-20TGU:	wall	
Maspion Ceiling Exhaust CEF2510:		
	Roof Ceiling	
Panasonic FV-15EGK1ABN	Bathroom	

2.3 CONTROL SYSTEM(Literature Review Topic 2)

Control System theory has played an important role in a set of mechanical or electronic devices that regulates other devices or systems by way of control loops. Typically, control systems are computerized. Control systems are a central part of industry and of automation.

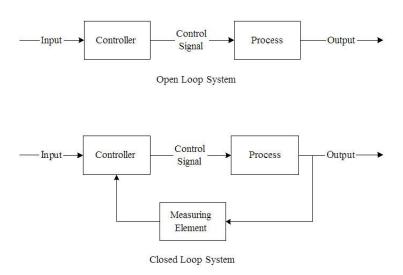


Figure 2. 1: Block diagram of open loop and closed loop system

2.3.1 MICROCONTROLLER

A microcontroller an integrated circuit that contains a microprocessor along with memory and associated circuits and that controls some or all of the functions of an electronic device (such as a home appliance) or system.

2.3.2 PROGRAMMABLE LOGIC CONTROL(PLC)

A programmable logic controller (PLC), or programmable controller is an industrial digital computer is a type of tiny computer that can receive data through its inputs and send operating instructions through its outputs.

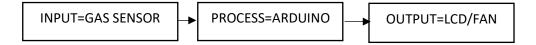
2.3.3 ARDUINO

Arduino is an open-source electronics platform based on easy-to-use hardware and software. Arduino boards are able to read inputs - light on a sensor, a finger on a button, or a Twitter message - and turn it into an output - activating a motor, turning on an LED, publishing something online.

2.4 CHAPTER SUMMARY

This section focusing on two different section, the first is some information from the control system, microcontroller, Programmable Logic Control (PLC), and Arduinode identifies its function. The second section is discovered about the technical part, including the selection of the type of controller.

CHAPTER 3 RESEARCH METHODOLOGY


3.1 INTRODUCTION

To realize this Project as a ready to use product with security features, a very comprehensive plan is being implemented. A step by step procedure is done so that the Project can be completed within the stipulated time. This includes collecting mechanical part design data, circuit design testing and validation.

3.2 PROJECT DESIGN AND OVERVIEW

As mentioned in the previous chapter, the controller is designed using a closed loop system with the Arduino as the main controller. The design of the controller circuit using Arduino is realized using Proteus Software and then converted to PCB circuit. In proteus arduino processes the input provided by the sensor gas and the output is used such as LCD and fan.

3.2.1 BLOCK DIAGRAM OF THE PROJECT

3.2.2 FLOWCHART OF THE PROJECT 2

Figure 3. 1 shows the circuit diagram of the whole system. It is show that gas sensor if detected gas will proceed to Arduino. If no ,it will not proceed. Next Arduino process will proceed to LCD and fan.

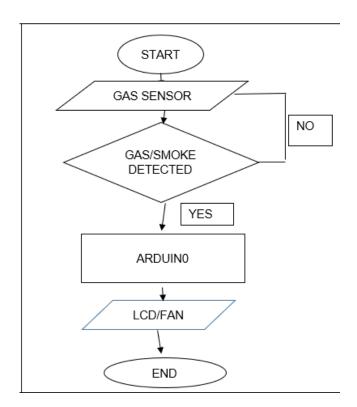
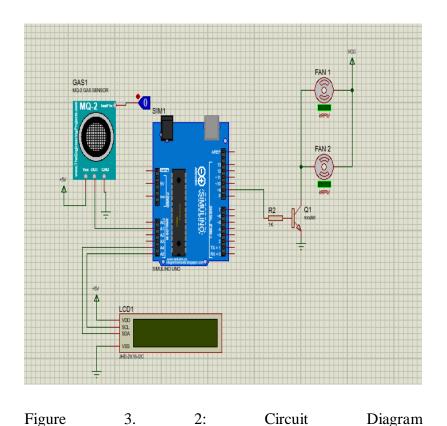


Figure 3. 1: Flow chart of operation of the system *Images may be subject to copyright

3.2.3 PROJECT DESCRIPTION


This project is a project for air freshener system in the kitchen.Gas detected by sensor(MQ-2 gas sensor) and the fan will be rotates and emits smoke detected by the sensor.

3.3 PROJECT HARDWARE

As mention in the previous chapter, the designed controller is using Arduino UNO .Then, the output of Fan/ LCD will on.

3.3.1 SCHEMATIC CIRCUIT

Figure 3. 2 shows the overall circuit diagram of this Project Automatic kitchen Fan

6....

^{*}Images may be subject to copyright

3.3.2 DESCRIPTION OF MAIN COMPONENT

3.3.2.1 COMPONENT 1

Gas sensor

Devices that can detect the presence and concentration of various hazardous gases and vapors

3.3.2.2 COMPONENT 2

Arduino

Arduino is an open-source microcontroller board based on the Microchip ATmega328P microcontroller and developed by Arduino.cc.

3.3.2.3 COMPONENT 3

Fan

Electric fans have a motor that moves blades that are attached to a central rotating hub.

3.3.3 CIRCUIT OPERATION

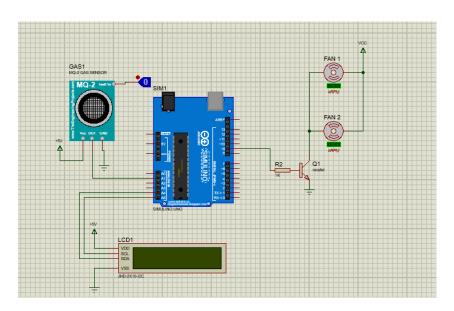


Figure 3.3: Circuit Operation

3.4 PROJECT SOFTWARE

- -PROTEUS 8 PROFESIONAL
- -SOFTWARE ARDUINO 1.8.9
- -ThinkerCad

3.4.1 FLOWCHART OF THE SYSTEM



Figure 3.4:Flowchart system

3.4.2 DESCRIPTION OF FLOWCHART

The flowchart is show that gas sensor if detected gas will proceed to Arduino.If no,it will not proceed next Arduino process will proceed to LCD and fan.

3.5 PROTOTYPE DEVELOPMENT

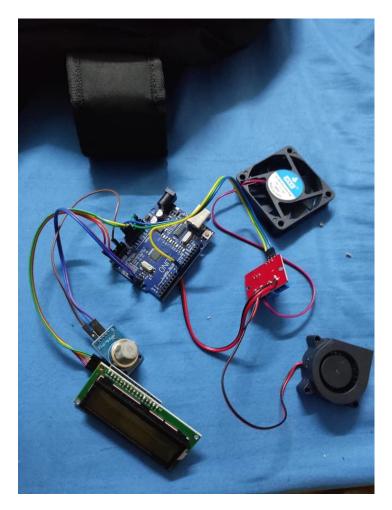


Figure 3.5:Prototype

3.5.1 MECHANICAL DESIGN/PRODUCT LAYOUT

Figure 3.3 shows the design of the product for the circuit using gas sensor, arduino, fan and LED.

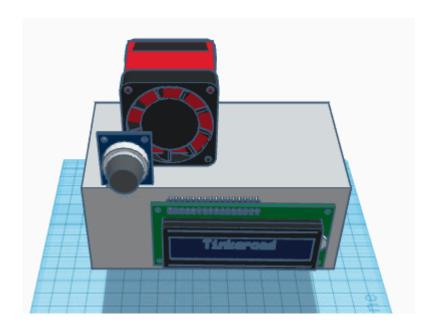


Figure 3. 3: Mechanical Design

3.6 SUSTAINIBILY ELEMENT IN THE DESIGN CONCEPT

In this project, environmental hygiene has been applied, that is, the smoke coming out of the fan will smell fragrant, there is a filter in the fan that will change the smell of smoke. For human it will be comfortable.

3.7 CHAPTER SUMMARY

In this section focuses on the process and circuit of the project program. The first is some information from the main components in the simulation namely Gas sensor, fan and arduino used. Next is information about the design of the resulting project.

CHAPTER 4 RESULTS AND DISCUSSION

4.1 INTRODUCTION

Regarding the research that has been done, it can help us to know about our project in more detail for each component and function so that this project can work according to the purpose that we have wanted.

4.2 RESULT AND ANALYSIS



FIGURE 4.1.RESULT

4.3 DISCUSSION

In planning an activity and work related to the project carried out, Discussions with the supervisor to reach the best consensus has been made to ensure that the activities run smoothly as planned and arranged. Each week there will be a meeting with the project supervisor to discuss the latest developments related to the report as well as the progress of the planned project. In addition, all problems encountered such as project shortcomings, problems to obtain information related to the project and so on are also voiced to get the best views and solutions from the views of our supervisors. All planning is done carefully. With this, the issues and developments of this project can be shared. All doubts and problems related to the project are discussed at this time until a solution is reached by mutual agreement.

4.4 CHAPTER SUMMARY

As a conclusion to this chapter, analysis and findings have been made. This project has many advantages but there are every bad to good. Therefore, challenges are taken as room for improvement and more development for the next generation and also to increase their knowledge about the projects we are running. Run tests are conducted to determine the full potential and proven to satisfy users

CHAPTER 5

CONCLUSION AND RECOMMENDATIONS

5.1 INTRODUCTION

Follow up at the end of the project until it is completed and successfully made tests, studies, get results such as data analysis and so on. Here it gives a lot of new knowledge lessons about each project information in detail and is beneficial during the project making process.

5.2 CONCLUSION

This project brings together several components and ideas to achieve the common goal of designing an automatic kitchen fan using Arduino UNO. The main component of the project includes a fan that will suck in smoke to be released in the air space automatically. With this, users will be more comfortable.

5.3 SUGGESTION FOR FUTURE WORK

The recommendation of this project can be based on things viz user friendly features and electricity savings. Disadvantages of the project, due to limited time and budget, speed mechanism AC motors can be improved by using the phase angle technique to provide variation required fan speed such as more than 5 speeds. The speed of the fan is accelerated and can suck the smoke quickly. With this project can also be placed in the hotel in the kitchen. for the supply voltage for this project can also be used solar to save electricity consumption.

5.4 CHAPTER SUMMARY

In this chapter, it focuses on the conclusions that I got at the end of this project in terms of every aspect that has been done successfully. In addition, in the end this project can bring benefits to the users who use it.

CHAPTER 6

PROJECT MANAGEMENT AND COSTING

6.1 INTRODUCTION

This project involves the cost of purchasing components and materials throughout its implementation. components involving cost are hardware Arduino, GAS sensor module, 20 ways jumper wire, motor, LCD, Fan, Relay. All of these components are purchased through online purchase methods to make it easier as well as save on costs.

The overall gross budget estimate in the implementation of this project is RM 133.00 and other expenses is at RM 40 according to this budget cost, this project is can be considered as a less costly project compared to other projects that can cost over a thousand ringgit. The cost of the project is also in line with one of the key features of a good project developer that is low cost but have a high quality project.

6.2 GHANT CHART AND ACTIVITIES OF PROJECT

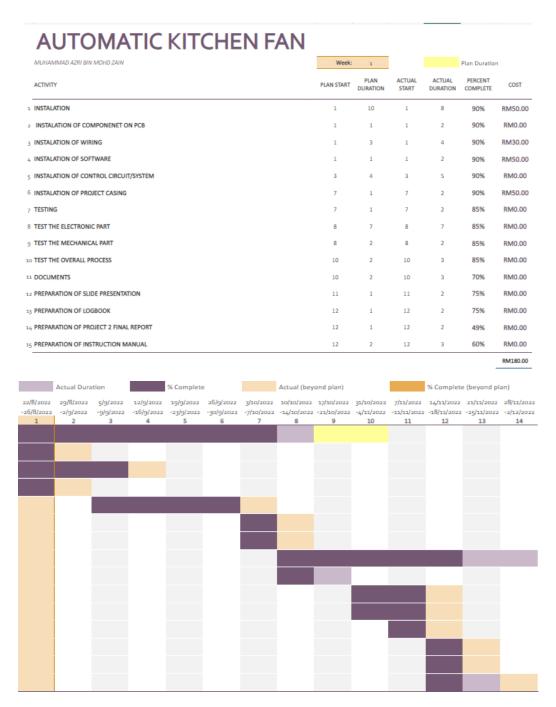


Figure 6.1:Ghant Chart

6.3 MILESTONE

Figure 6.2:Milestone

6.4 COST AND BUDGETTING

Table 6.1;Cost Of Project

No.	Component and materials	The unit price	Quantity	Total
1	Arduino set	RM 30.00	1	RM30.00
2.	LCD	RM 15.00	1	RM10.00
3.	Relay	RM5.00	1	RM5.00
4.	GAS Sensor module	RM 10.00	1	RM 7.00
5.	Battery	RM 3.00	4	RM 15.00
6.	20 ways jumper wire	RM 6.00	2	RM 12.00
7.	Fan	RM7.00	2	RM14.00
8.	Other materials	RM 40	-	RM 40
			Total :	RM 133.00
	List of other costing			
1	Transportation			Rm25.00
2	Postage			RM15.00
3	Internet			
3	internet			RM10.00
			Total:	RM50.00
			Overall total	RM183.00

6.5 CHAPTER SUMMARY

This section is show the Program schedule project manufacturing travel process, First is the project milestones and then the project cost calculated throughout the project manufacturing and cost for the other list.

REFERENCES

Centre for Telecommunication Research and Innovation (CeTRI),

Faculty of Electronic and Computer Engineering, Universiti Teknikal Malaysia Melaka

Electrical & Electronics Engineering Programme in Partial Fulfillment of the Requirements for the Degree Bachelor of Engineering (Hons) (Electrical & Electronics Engineering) Universiti Teknologi PETRONAS Bandar Seri Iskandar 31750 Tronoh Perak Darul Ridzuan

M. A. M Azran Faculty of Computing, Sri Lanka Institute of Information Technology Colombo

Mr. Gaurav V Tawale-Patil, Miss. Kalyani H Kulkarni, Miss. Pooja U Kuwad, Miss. Pooja R Pawar Department of Information Technology, Vishwakarma Institute of Information Technology, Savitribai Phule Pune University, India.

Navindran A/L Alagari1 , Jais Lias1* 1Faculty of Electrical and Electronic Engineering, Universiti Tun Hussein Onn Malaysia, 86400 Parit Raja, Batu Pahat, Johor, MALAYSIA

APPENDICES

APPENDIX A- DATA SHEET

BP Projek Pelajar Diploma Politeknik 2021 Final 11Mac-converted.docx

APPENDIX B- PROGRAMMING

digitalWrite(fan,LOW);

digitalWrite(buz,LOW);

```
#include <LiquidCrystal_I2C.h>
// Set the LCD address to 0x27 for a 16 chars and 2 line display
LiquidCrystal_I2C lcd(0x27, 16, 2);
int mq2=A1;
int fan=9;
int buz=12;
int d;
float p;
void setup()
{
Serial.begin(9600);
pinMode(fan,OUTPUT);
pinMode(buz,OUTPUT);
```

```
// initialize the LCD
 lcd.begin();
 // Turn on the blacklight and print a message.
 lcd.backlight();
 lcd.print("LPG SENSOR");
}
void loop()
{
d=analogRead(mq2);
lcd.setCursor(0,0);
lcd.print("LPG SENSOR");
Serial.println(d);
if(d < 260)
{
p=0;
}
else
{
p=(d-260)/9.64;
}
lcd.setCursor(0,1);
lcd.print(p);
lcd.setCursor(5,1);
```

```
lcd.print("%");
if(p>=1)
{
digitalWrite(fan,HIGH);
digitalWrite(buz,HIGH);
lcd.setCursor(9,1);
lcd.print("FAN ONN");
}
else
{
digitalWrite(fan,LOW);
digitalWrite(buz,LOW);
}
delay(500);
lcd.clear();
     }
```

