

POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

FINAL REPORT

BLIND-SPOT ALERT SYSTEM

STUDENT NAME: MATRICS NUMBER: COURSE NAME: DEPARTMENT: COURSE CODE: SUPERVISOR: NURUL NADIRA BINTI MOHD ZAMRI 08DEP20F1019 Diploma in Electronic (Communication) Department of Electrical Engineering DEE50102 – PROJECT 2 PN ANNAFAEDZATUL BINTI MOHAMAD AMIN

CONFIRMATION OF THE PROJECT

The "BLIND-SPOT ALERT SYSTEM" project report has been submitted, evaluated, and confirmed as meeting the conditions and specifications of the Project Writing as specified.

Checked by: Supervisor's Name: Puan Annafaedzatul Binti Mohamad Amin Supervisor's Signature: Date:

Verified By: Project Coordinator Name: Signature of Coordinator: Date:

DECLARATION

I hereby declare that the work in this report is my own except for material used form other sources has been clearly identified and properly acknowledged and referenced.

Signature:

Name: Nurul Nadira Binti Mohd Zamri Registration No.: 08DEP20F1019 Date: 20 December 2022

TABLE OF CONTENT

NO	TOPIC	PAGE
1	ACKNOWLEDGMENT	6
2	ABSTRACT	7
	CHAPTER 1	
1	1.0: INTRODUCTION	8
2	1.1: PROJECT BACKGROUND	8
3	1.2: PROBLEM STATEMENT	8-9
4	1.3: OBJECTIVE	9
5	1.4: SCOPE OF PROJECT	9
6	1.5: IMPORTANT OF POJECT	9
	2.0 LITERATURE REVIEW	
1	2.1: INTRODUCTION	10
2	2.2: LITRATURE REVIEW BLIND-SPOT ALERT SYSTEM	10-15
	AND CHILD ALERT SYSTEM	
3	2.3 SUMMARY	16
	3.0 METHODOLOGY	
1	3.1: INTRODUCTION	16
	3.2 PROJECT DESIGN AND OVERVIEW	
1	3.2.1: BLOCKDIAGRAM OF SOFTWARE PROJECT	16-17
2	3.2.2: FLOWCHART OF SOFTWARE PROJECT	17-18
3	3.2.3: PROJECT DESCRIPTION	18

4	3.3: SUMMARY	18
1	4.0: EXPECTED RESULT	18-20
	APPENDICES	
1	APPENDIX 1: GANTT CHART	21
2	APPENDIX 2: DATASHEET	22
3	APPENDIX 3: PROGRAM CODING	22-28
4	APPENDIX 4: QUESTIONNAIRE	29-34
1	REFERENCE	34-35

ACKNOWLEDGMENT

First and foremost, I would want to thank Allah SWT for the benefits He bestowed upon me during my research, which enabled me to successfully complete the project. When a student's hopes and expectations are materialised as a physical working model, there is nothing that can equal to the satisfaction that is felt.

Many people deserve our gratitude for joining us on this wonderful, thrilling, and challenging adventure. I want to express my gratitude to my supervisor Puan Annafaedzatul binti Mohamad Amin for her assistance with this initiative. She let me work on this project and helped me the entire time. I also want to thank my parents for keeping an eye on me while I finished my project in a short amount of time. Also I would like to thank all the senior that helping me find the solution with me about the problem I facing in finishing the project. I've also received presentation-related advice from my boss, which might be very useful if I decide to continue this career path in the future. Our goals have received support from my boss as well. She also makes sure to maintain the direction of our progress.

ABSTRACT

Road accidents can happen if you neglect the blind spots when driving. As a driver, you need to identify the blind spots to avoid any untoward incident. There is the case involving motorist and lorry that accident because of the lorry driver could not see the motorist from the front blind-spot area. A child left unattended in a car can suffer the fatal effects of heat stroke in just 15 minutes. Also in February 2020, a baby girl died of heatstroke after she was left for 4 hours in the back seat of a multipurpose vehicle. It happen because of the father forgot and did not notice that he should send his daughter to the nursery. The purpose of this project is to develop a blind-spot detection device by using ultrasonic sensor and to design a software that can alerting driver by using wifi. The ultrasonic sensor will sense any object that pass near the sensor. Meanwhile the pir sensor will detect the heat and motion inside and outside the car. This two sensor will alert and send the data to raspberry pi. We used raspberry pi to send the notification or alert the user using wifi module and application.

1.0 INTRODUCTION

On 2022 there is a case involving motorist and lorry that accident because of the lorry driver could not see the motorist from the front blind-spot area. The lorry driver failed to avoid the victim and hit them. It cause they died in the accident during changing the tyre at the roadside. A volvo car already have this feature on their car but they is so expensive. So we decide to made the blindspot detection but in the affordable price. Other than blind-spot detection, our project also about child left in the car. There is so many cases about child died in the car due to their parents forget about their children. For example, at Kuantan there is case about nine month old girl died of heatstroke because the father was forget to send his daughter to the nursery and go straight to the work. From the analysis data that we get through our need analysis survey using google form is most of the respondent aware about blind-spot area but sometime they also find that they cannot see other vehicle at the blind-spot area. They also agree that if this system exist it can facilitate the driver so they interested to install this system at their car. From analysis survey we also know that most of the parents often bring their child anywhere and sometime they also forgotten about their child.

1.1 PROJECT BACKGROUND

A blind spot is an area of the road outside the driver's field of vision that cannot be seen in the rear-view mirrors or through the windows. Blind spots are all around vehicles, but their size and location vary according to the type of vehicle. The main blind spots are located in front, at the rear, on the sides and behind the windshield pillars of the vehicle. So from this problem we think that we want to solve this problem so it will be easier to all people.

Other than we not only doing about car blind spot we also do project about child detection. A child was found death due to heatstroke after she was accidentally left by her father in his parked car in Kedah (Kuala Lumpur, 2020). A total of six deaths involving children who were accidentally left behind in vehicles have been reported in the country since 2018 (Dewan Rakyat, 2020). Besides that, a nine month baby was died due to heatstroke after being left in the car for four hours by her father that is forgotten to send her to nursery (Kuantan, 2020). Negligence like this can invite danger to children in turn capable of threatening their lives.

1.2 PROBLEM STATEMENT

On 2022 there is a case involving motorist and lorry that accident because of the lorry driver could not see the motorist from the front blind-spot area. The lorry driver failed to avoid the victim and 8 | FINAL REPORTIDEE50102 hit them. It cause they died in the accident during changing the tyre at the roadside. Other than blind-spot detection, our project also about child left in the car. There is so many cases about child died in the car due to their parents forget about their children. For example, at Kuantan there is case about nine month old girl died of heatstroke because the father was forget to send his daughter to the nursery and go straight to the work. So from this cases we found that driver has difficulty to noticing another vehicle at blind-spot area and parents forget about having their child in the car and leaving them in a car with the engine is off.

1.3 **OBJECTIVES AND AIMS**

This project was to develop a blind-spot detection by using ultrasonic sensor and to design a software that can alerting driver by using wifi. Our aims is to help people that is having difficulty to notify vehicle at blind-spot detection. Other than that, our is also to remind the parents that bring their child that they left their child in the vehicle.

1.4 PROJECT SCOPE

Our project scope is for the driver that is does not have blind spot alerting system in their car. So with the existence of this system people can put this system in their car. So there will be no more problem about does not see any vehicle in blind spot area. Other than that, our project scope also for parents vehicle that does not remind them that their child was being left in the car. After put this system in the parents car, parents will be more alert about either their child in the car or not. So they will not forget about them again.

1.5 IMPORTANT OF PROJECT

Significance of our project is to help people that having difficulty to notify vehicle at their blind spot area. So with this system the driver will be more alert about the whereabouts of other car at the blind spot area that they cannot see. So with this system we also can avoid the thing that we don't want to happen such as accident. Other than that, the significance of this project is to remind parents that they bring their child during outing. There is so many issues about child died in the car due to the parents forgotten that they have their child in the backseat of the car. So with this system we can overcome the problem so the parents will always remember about their child through the application that is being download at their own phone.

2.0 LITERATURE REVIEW

2.1 INTRODUCTION

Fadzly hanaffi reported that in Johor the trailer crashes into car at junction after failing to see vehicle in its blind spot. Half of the car was come under the trailer was the causes of the accident. Other than blind-spot, child left in the car was another cases. At Johor Bahru a cases was reported to the police according to the child left in the car unintentionally by her grandmother. Just because the grandmother forgot her granddaughter in the car for a few hours, it bring to the death of the child.

2.2 LITERATURE REVIEW BLIND-SPOT ALERT SYSTEM AND CHILD ALERT SYSTEM

This chapter expands on the literature evaluations that provide information in line with the project's choice of a blind-spot alerting system and child alerting system as its technique. The obtained pertinent data is listed below.

AUTHOR	METHOD	SOLUTION
Detecting Blind	The system is based on	developed system that detects
Spot By Using	Arduino microcontroller.	blind-spot area and then controls
Ultrasonic Sensor	The system consist	the speed of the individual motors
	ultrasonic sensor, motor IC,	connected to the axial of the
T. S. Ajay and R.	DC motor. The obstacle	wheel. The vehicle is fitted with
Ezhil	when detected in the blind	four sensors to check the front,
	spot, the data is acquired by	rear, and the two side of the
	ultrasonic sensor HC-SR04	automobile. When an obstacle is
	with a specified range and	detected on the blind spot area, the
	then it is fed to the input for	distance of the obstacle is
	Arduino mega 2560. The	calculated and fed to the Arduino
	ultrasonic sensor measures	Mega to process the necessary
	the time difference of the	action. The ultrasonic sensor HC-
	obstacle in the vicinity of	SR04 provides 2cm - 400cm
	the vehicle and then	

	calculates the distance with	measurement range, the accuracy
	time. Then the data is	of ranging can reach to 3mm.
	manipulated to control the	
	motors and to reduce the	
	speed of motor by specified	
	amount.	
Vehicle Collision	The system uses the	designed a system to detect the
Avoidance System	ultrasonic sensors around	obstacle from distance and the
by Blind Spot	the vehicle to detect the	presence of the driver while
Monitoring and	incoming obstacle in the	driving is observed to take
Drowsiness	specified range and sensor	preventive measures to avoid
Detection in	feedback is given to the	accidents. The blind-spot
Automobiles	raspberry pi microcontroller	monitoring is made at night times
	as to give the image of the	using night vision camera to
G. Rishetha,	vehicles to the driver, and	capture obstacle at night time.
M. Tech Student,	warn by giving buzzer	The drowsiness detection could
CVR College of	sound.	be extended as security system
Engineering/ECE		using the face detection
Department,		technique in MATLAB software.
Hyderabad, India		This paper also using high
and S. Sailaja		efficiency GSM and GPS
Asst. Professor,		modules. We can find the
CVR College of		location of particular object
Engineering/ECE		through SMS, so that sometimes
Department,		we can easily identify the object
Hyderabad, India		time and place easily. And also
		by adding multiple sensors (like
		metal and obstacle sensors) to the
		system, we can use this moving
		robotic arm as multifunctional
		system used for finding the metal
		objects or bombs, further we can
		auto control robotic arm using
		obstacle sensor.

V-1-1-1 D1 10		
Vehicle Blind Spot	m. Components selection is	developed The Smart Vehicle
Monitoring	the main role in constructing	Blind-Spot Monitoring System
Phenomenon using	an inexpensive blind spot	(VBMS) as a vehicle safety
Ultrasonic Sensor	detection system in the	feature in order to improve the
	present work. Thus,	awareness among drivers
	Arduino UNO R3 model	regarding the presence of hazard
Adnan, Z., Hassan,	and HC-SR04 ultrasonic	around their vehicle. VBSM had
M. Z.	sensors were employed for	been made in simple component
, Ab Wahab N.	the VBMS system due to	system configuration, consisting a
, Najib, S.M.	reasonable market price.	single control unit that combines
, Nasir, N.S	Plus, the ultrasonic sensor	two component functions
	has	collaborating with each other. The
	demonstrated a remarkable	procedure of device development
	performance in the past	was done carefully according to
	blind spot detection system	sequence for software to hardware
	application. Concerning	components. Hence, no flow or
	easy installation as well as	skipped step happened until the
	maintenance on any vehicle,	final stage of production. The
	the VBMS is designed as	software system performed real-
	a compact device which	time processing without lagging
	assembles the main control	sue to fever components involved,
	unit and sensory part in a	plus the sensing distance
	single body to be located at	adjustment was very practical via
	the bottom of the side	IDE software to be equipped on
	mirror. Meanwhile, the	different vehicle sizes. The best
	hazard-warning signal is	suitable sensor chosen had
	separately located at the	provided true information for the
	passenger compartment for	driver in various speed and
	easily visible by the driver.	vehicle conditions tested during
	The angle and sensing range	the day and night time.
	of sensors are both	
	adjustable but vital as their	
	projections define the blind	
	spot limit accurately by	
	- • •	

	characterizing low to a high	
	potential hazard.	
Real-time	Detecting objects (including	developed a system and was
approaching vehicle	all kinds of vehicles,	verified by using video database
detection in blind-	bicycles, and pedestrians)	of Blind-Spot area, including
spot area	accurately and efficiently is	three road situations and four
	an essential issue in blind-	weather conditions. The system
C.T. Chen, Y.S.	spot information system	accuracy is more than91.01% and
Chen	(BLIS). To meet these	the mean distance of warning area
	requirements, this paper	is about 8.1m. The result are
	presents an image-based	satisfied to the system
	method to detect	specification and show the
	approaching objects in	algorithm is excellent for
	blind-spot area and	approaching vehicle detection of
	proposes a verification	vehicle imaging system. An
	method by using the	image process method to detect
	recorded video database	the motion object. The 2D data of
	from real traffic	a road image is transferred to 1D
	environment. By taking	lane information by using the
	video frames and converting	estimation of image entropy
	the images into one	firstly, and the possible vehicle
	dimensional information,	position is determined by using
	the image	the differentiation process.
	entropy of the road scene in	Moreover, the position of
	the near lane are estimated.	approaching vehicle is
	Thus, by analysis the lane	determined by the information of
	information, an object will	two lanes extracted from the
	be	images of time series
	detected and located in a	
	constant time. This idea has	
	been realized and	
	implemented on low-cost	
	DSP platform developed by	
	Automotive Research and	
	Testing Center (ARTC,	

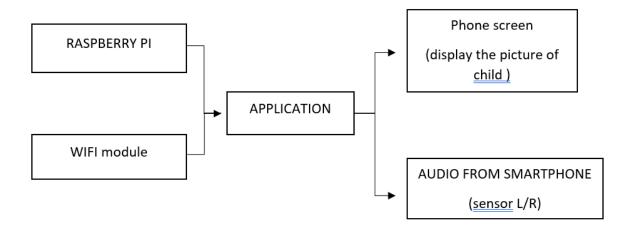
	Toimer) The second to t	
	Taiwan). The accurate rate	
	of this blind-spot detection	
	system (BDS) is 91% and	
	the frame rate is more than	
	20 frames per sec (fps), in	
	day and night and all	
	weather conditions. The	
	BDS has been applied for	
	general	
	vehicles and heavy truck	
	vehicles nowadays	
Semi-Truck Blind	The Truck Smart Blind Spot	developed a system that wireless,
Spot	Detection System was	portable, sensor-based system, an
Detection System	designed to solve this issue.	LED display, alerts the driver
	The system consists of two	when a vehicle or a pedestrian is
	parts: one display hub unit	occupying their blind spot. This
Abhijith	and three sensor units. The	system provide an inexpensive
Santhoshkumar,	sensors are to be	way to prevent accidents caused
Aris Socorro,	strategically placed in key	by limited line of sight in large
David Sheets, and	locations	vehicles. The system is made
Neel Sheth	around the outer body of the	portable so that it can be changed
Dept. of Electrical	truck. The hub can be seated	from trailer to trailer. This system
Engineering and	in the cabin in a location that	is designed to work with all
Computer	is most convenient to the	different models and sizes of
Science, University	driver. While the system is	trucks and, if implemented
of Central Florida,	on, the sensors will	widely, can drastically decrease
Orlando,	continuously send data to	the number of truck related road
Florida	the LED display unit. When	crashes.
	a	
	sensor senses an obstruction	
	in its region, the	
	corresponding LED will	
	turn on warning the driver	
	that	

	the region is occupied. If all	
	the LEDs are off, it can be	
	determined that all the areas	
	are clear and it's safe to	
	change lanes if needed.	
IOT Based Smart	Kids and object tracking	developed a real-time tracking for
Life Saver System	system by GSM uses	locating missing children based
for Kids and	Arduino powered by	on IoT. The study aims to child
Objected Tracking	battery, as Arduino is the	tracking and monitoring system
	mastermind and organizes	based on GPS, GSM, GPRS
Diaa SALAMA	all the system processes. It	modules and Arduino. The
ABD.ELMINAAM,	is connected to sensors (X,	proposed system allows
Rasha ORBAN,	Y types). The sensor knows	tracking children using the
and Fatma SAKR	the state of the body for its	application of the IOT and
	Pitch or Roll; also it exists in	identifying the coordinates of
	the system connection	their locations in real time and
	between Arduino and	at any place to protect them from
	Smartphone are made by	losing or kidnapping by
	a device called See Shield	exploiting the IOT's technologies.
	Interface which transfer and	solution takes advantage of
	translate information from	smartphones, which offers rich
	the smartphone to Arduino	features like Google maps, GPS,
	and vice versa. It also helps	SMS, etc. The microcontroller used
	the child ask for help by	in the proposed method (Arduino
	sending SMS with the	MEGA 2560 With WiFi Built-in -
	location in the message. The	ESP8266) .its official price is not
	energy needed by the	high, available for more customers.
	device ranges from 9-12	In the future, we aim to resize it and
	volts to a small battery that	increase the number of sensors and
	gives Arduino energy to	determine a specific zone for
	work, and Arduino feeds its	children. It sends a random SMS
	sensors.	when the child or the object moves
		far from its zone. The results show
		the superiority of the propsed
		solution over other solutions.

2.3 SUMMARY

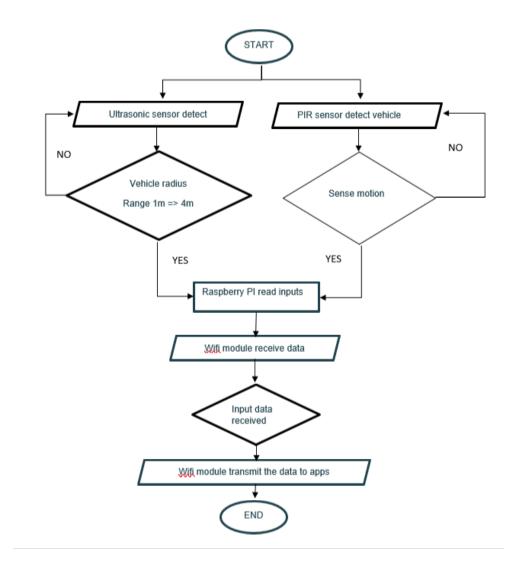
From the research paper that we get, for the blind spot we will use ultrasonic HC-SR04 for the sensor that will be use at the car. The range of this type of sensor is 2cm until 400cm and the accuracy is 3mm. And for human detection we will use pir sensor because pir sensor is a sensor that is specification for human detect. Other than that, most of people using Arduino it is because Arduino is more easy to use it but some of it using raspberry pi. So we decide to use raspberry pi because raspberry pi is more detail for it component than Arduino. Lastly, for the ouput most of the paper that I doing research is using GSM or SMS to the phone. But for our project we decide to use application to put more IOT in our project. The application will be more easy for the user because it is all in the apps already.

3.0 METHODOLOGY


3.1 INTRODUCTION

Our research method is the ultrasonic sensor will sense any object that pass near the sensor. Meanwhile the pir sensor will detect the heat and motion inside and outside the car. This two sensor will alert and send the data to raspberry pi. We used raspberry pi to send the notification or alert the user using wifi module and application. Our project power supply is use dc motor driver, L239D pic and 9V battery. The battery will provide 9V throught the pic to the motor. The pic will provide only 3.3V or 5V supply to the raspberry pi will not overload.

3.2 PROJECT DESIGN AND OVRVIEW


3.2.1 Block Diagram of software Project

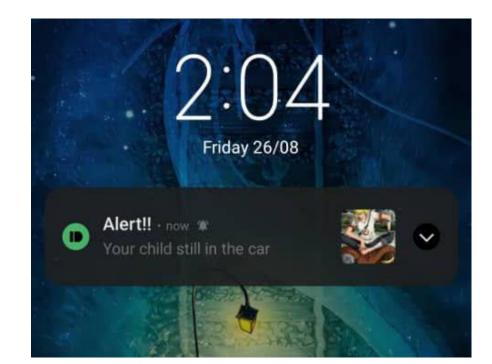
This is software block diagram that we already figure out about this project

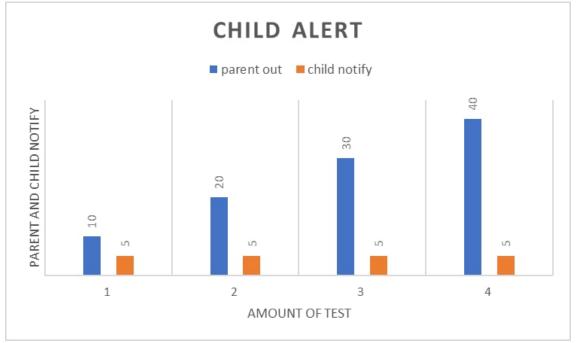
3.2.2 Flowchart of software Project

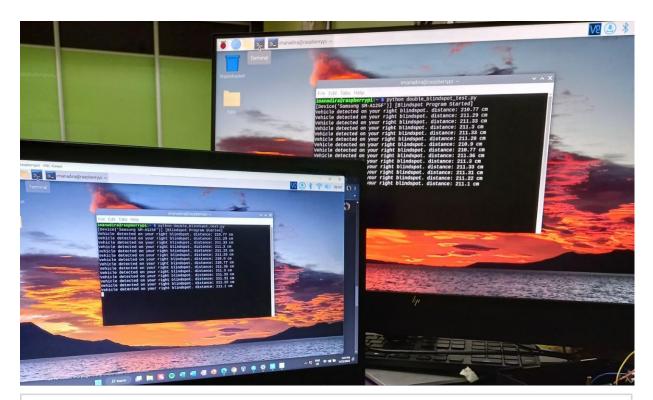
This Is project software flowchart that we want to do for this project.

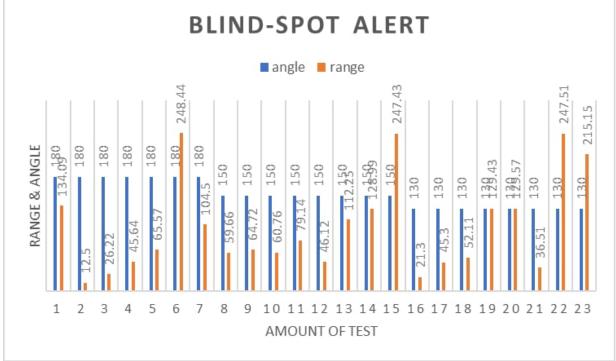
From this flowchart, we can see that this project software input data or get the date from both sensor that we use which is ultrasonic sensor for noticing vehicle and PIR sensor is for noticing a person or child presence. The data will transmit to wifi module from raspberry pi and then from wifi module the data will be transmit to the app and after that the user will get the notification from the app that we will build.

3.2.3 Project Description


from the block diagram we can see that this project input is power supply, ultrasonic sensor and pir sensor. The ultrasonic sensor is for vhilcle detection and distance measurement that will be place at left and right of the car. It same goes for the pir sensor but the pir sensor function is to the detect human that will be inside of the car. After that all this input will be goes to the raspberry pi which is an intermediary between the input and output. So the input that goes to the raspberry pi will go the that application using wifi module. Sp from here we can see that the output for this project will be application.

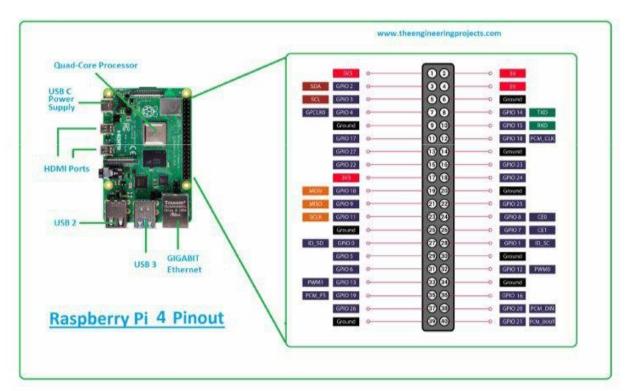

3.3 Summary


So for our project we does not doing it finish yet because we more focus to the mini project that we are doing right now but all the preparation we already doing it such as the component that we wil be using. So for the hardware part of this project the main we will use the ultrasonic sensor, pir sensor and raspberry pi. For the other part that we use is dc motor, battery and wifi module.


4.0 EXPECTED RESULT

our project expected result is the ultrasonic sensor will detect the vehicle that past by the detection area of the sensor and PIR sensor will detect child that was inside of the car so these two sensors will be input to the raspberry pi and the raspberry pi will send the signal to the application through wifi module. The application will send the notification to the driver of the car through the apps that will be install in the owner of the car phone. The ultrasonic sensor will just send the notification to the phone meanwhile the pir sensor will send notification of the child at the application.

APPENDICES


APPENDIX 1: GANTT CHART

CARTA GANTT : PERANCANGAN DAN PELAKSANAAN PROJEK PELAJAR

SESI:1:2022/2023 JABATAN: JKE KODKURSUS: DEE50102 TAJUK PROJEK : BLIND-SPOT ALERT SYSTEM Minggu / Aktiviti Projek M1 M2 МЗ M4 M5 M6 M7 **M8** M9 M10 M11 M12 M13 M15 M16 logbook made software for project make more research on sensor coding make an apps test it with hardware make a demo video EEIC competition final report technical writing

PINOUT OF RASPBERRY 4

	3V3 power >	00	5V power
	GPIO 2 (SDA) o	00	
	GPIO 3 (SCL)	00	Ground
1 6588 E	GPIO 4 (GPCLK0) o	00	
	Ground o	00	
	GPIO 17	00	GPIO 18 (PCM_CLK)
	GPIO 27 0		Ground
	GPIO 22 0	60	
	3V3 power o	GD	GPIO 24
	GPIO 10 (MOSI)	00	Ground
	GPIO 9 (MISO) o	00	
	GPIO 11 (SCLK) o	00	
	Ground o-	00	
	GPIO 0 (ID_SD)	00	
	GPI0 5	00	Ground
	GP10 6 -	00	
	GPIO 13 (PWM1) -	60	Ground
X 1 X 1 X 1 X 1 X 1	GPIO 19 (PCM_FS) o-	00	
	GPIO 26	00	
	Ground	00	

APPENDIX 2: DATASHEET

APPENDIX 3: PROGRAM CODING

1. BLIND-SPOT CODING

#-----

PROJECT TITLE : Anti Blindspot Alert System
MEMBERS : Iman Azmi and Dira
INSTITUTE : Politeknik Shah Alam
#------

import RPi.GPIO as GPIO import time from time import sleep from pushbullet import Pushbullet

#set device details

pb = Pushbullet("o.KCwhC0kC5Nu97uo2lXw39RpnzYOlKkJx") #put access token here
print(pb.devices, "[Blindspot Program Started]")

#pin assignment

sensor_trig1 = 11 #pin trigger right
sensor_echo1 = 13 #pin echo right
sensor_trig2 = 29 #pin trigger left
sensor_echo2 = 31 #pin echo left

#set GPIO to default/initial state GPIO.setwarnings(False) GPIO.setmode(GPIO.BOARD) GPIO.setup(sensor_trig1,GPIO.OUT) GPIO.setup(sensor_echo1,GPIO.IN) GPIO.setup(sensor_trig2,GPIO.OUT) GPIO.setup(sensor_echo2,GPIO.IN)

#initial state for detection
left_state = 0
right_state = 0

def blindspot():

 $left_state = 0$ **23** | FINAL REPORT|DEE50102

```
right_state = 0
```

try:

while True:

PIN_TRIGGER = [sensor_trig1, sensor_trig2] ECHOS = [sensor_echo1, sensor_echo2]

for e in ECHOS:

GPIO.output(PIN_TRIGGER, GPIO.LOW)

#print ("Waiting for sensor to settle")
time.sleep(0.5)
#print ("Calculating distance")

GPIO.output(PIN_TRIGGER, GPIO.HIGH) time.sleep(0.00001) GPIO.output(PIN_TRIGGER, GPIO.LOW)

while GPIO.input(e) == 0: pulse_start_time = time.time() while GPIO.input(e) == 1: pulse_end_time = time.time()

pulse_duration = pulse_end_time - pulse_start_time
distance = round(pulse_duration * 17150, 2)

#NOTE: distance = 5 (5cm jarak untuk detect blindspot)

if (e==31 and distance<=5 and distance>=2): print("Vehicle detected on your left blindspot.", "distance:",

distance,"cm")

```
dev = pb.get_device('Xiaomi 21061110AG')
push = dev.push_note("Vehicle detected on your left
```

blindspot","")

```
left_state = 1
time.sleep(2)
if (e==13 and distance<=5 and distance>=2):
    print("Vehicle detected on your right blindspot.", "distance:",
```

distance,"cm")

dev = pb.get_device('Xiaomi 21061110AG') push = dev.push_note("Vehicle detected on your right blindspot","") $right_state = 1$ time.sleep(2) if (left_state == 1 and distance>5): $left_state = 0$ time.sleep(5)if (right_state == 1 and distance>5): $right_state = 0$ time.sleep(5)if (right_state==1 and left_state==1): print("Vehicle detected on your both blindspot") dev = pb.get_device('Xiaomi 21061110AG') push = dev.push_note("Vehicle detected on your both blindspot","") time.sleep(5) $right_state = 0$ $left_state = 0$ if (right_state==0 and left_state==0): #print("distance: ", distance,"cm") i=4finally: GPIO.cleanup() if __name__ == "__main__": try:

while True:

blindspot()

time.sleep(0.1)

except KeyboardInterrupt:

print("Program Stopped")

2. CHILD ALERT CODING

import RPi.GPIO as GPIO import time from time import sleep from pushbullet import Pushbullet

pb = Pushbullet("o.KCwhC0kC5Nu97uo2lXw39RpnzYOlKkJx") #put access token here
print(pb.devices, "[Child Alert Program Started]")

GPIO.setwarnings(False)GPIO.setmode(GPIO.BOARD)GPIO.setup(36,GPIO.IN) #child pinGPIO.setup(40,GPIO.IN) #parent pin

parent_state = 0 #parent state to check whether they have left the car child_state = 0 #parent state to check whether they have left the car

def main():

parent_state = 0 child_state = 0

while True:

```
parent = GPIO.input(40)
child = GPIO.input(36)
if (parent == 0 and parent_state == 0):
    print("no parent motion")
    child = GPIO.input(36)
    child_state = 0
    time.sleep(0.5)
if parent == 1:
    print("parent detected")
    time.sleep(16)
```

```
parent_state = 1
        child = GPIO.input(36)
        time.sleep(1)
        parent = GPIO.input(40)
        if (parent == 0 and parent_state==1):
                print("parents leave the vehicle")
                                                         #parent keluar kereta
                parent_state = 2
                child_state = 1
                                         #state check whether child still in the car
                time.sleep(20)
                                         #time for child get out of the vehicle
if child == 0 and child_state==0 or child_state == 1:
        print("no child motion")
        parent = GPIO.input(40)
        time.sleep(0.5)
if child == 1 and child_state == 1:
        print("child detected")
        child_state = 2
        #parent = GPIO.input(40)
        time.sleep(10)
        while child_state == 2 and parent_state==2:
                print("Alert!!", "Your child still in the car")
                dev = pb.get_device('Xiaomi 21061110AG')
                push = dev.push_note("Alert!!", "Your child still in the car")
                time.sleep(16)
                                         #check whether child still in the car
                child = GPIO.input(36)
                parent = GPIO.input(40)
                time.sleep(0.5)
                if (child == 0):
                        child_state==0
                        parent_state = 0
                        time.sleep(0.5)
                else:
                        #parent = GPIO.input(40)
                        child = GPIO.input(36)
```

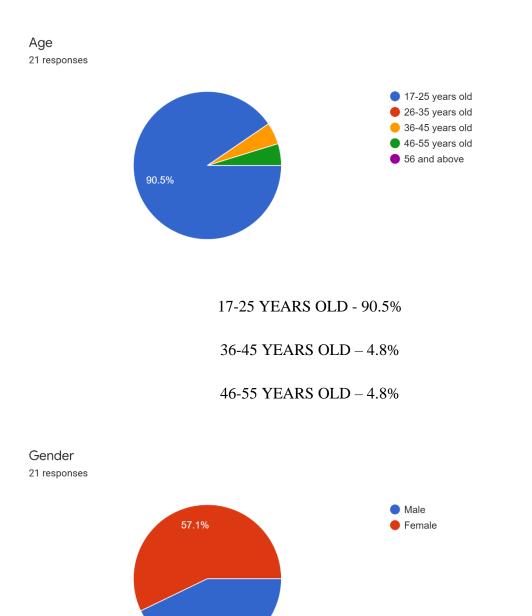
def cuba():

try:

while True:

parent = GPIO.input(40) child = GPIO.input(36) print("parent:", parent, "child:", child) time.sleep(16)

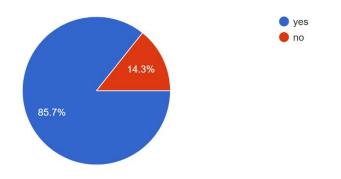
finally:

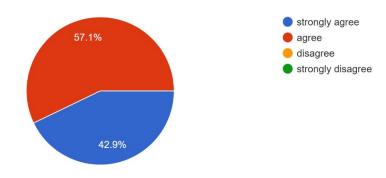

GPIO.cleanup()

if _____name___ == "____main___":

try:

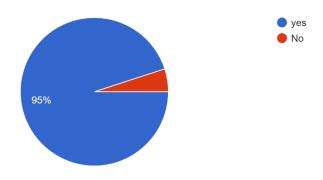
while True: main() #cuba() except KeyboardInterrupt: print("Program Stopped") GPIO.cleanup()

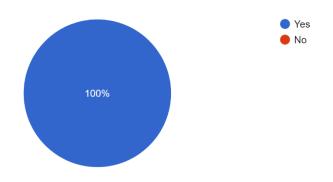

APPENDIX 4: QUESTIONNAIRE

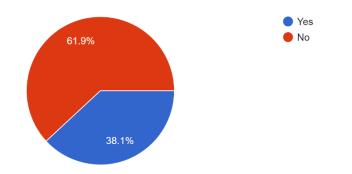

FIRST SECTION – BLIND-SPOT ALERTING SYSTEM

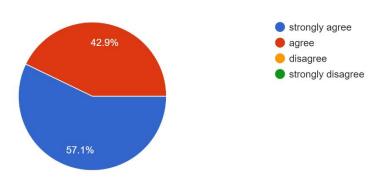
42.9%


Do you have any vehicle ? 21 responses

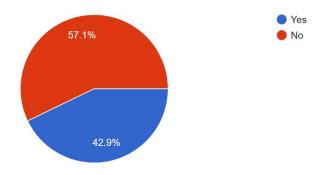

Do you find that sometime you cannot see other vehicle at the blind-spot area? 21 responses


Do you aware about blind-spot area? 20 responses

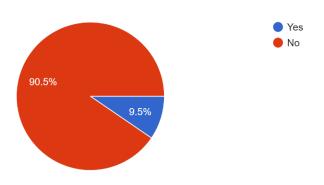

If this system exist does it facilitate the driver ? 20 responses


Do you interested to install this system at your car? 21 responses

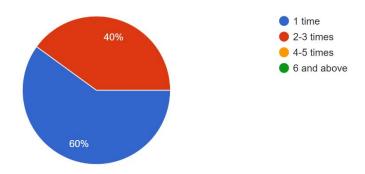
Have you ever accident because you did not realized the car at blind spot area? 21 responses



Does blind-spot alerting system very useful nowadays? 21 responses



SECOND SECTION – CHILD LEFT IN THE CAR DETECTION


Do you often bring your child anywhere 21 responses

Have you ever experience leaving and forgot your child inside your car? 21 responses

If yes , how many times you left your child inside the car ? $_{\rm 5\,responses}$

SUGGESTION

Suggestions for improvement "Blind-Spot Alerting System"

4 responses

Nope

Do it for community

strengthen the car safety system. improve security sensors for blind spot car

Can connect with your phone

REFERENCES

[1] T. S. Ajay, R. Ezhil, 2016, Detecting Blind Spot By Using Ultrasonic Sensor

[2] G.Rishetha and S.Sailaja, 2017, Vehicle Collision Avoidance System by Blind Spot

Monitoring and Drowsiness Detection in Automobiles

[3] Adnan, Z., Hassan, M. Z., Ab Wahab N., Najib, S.M., Nasir, N.S., 2020, Vehicle Blind Spot Monitoring Phenomenon using Ultrasonic Sensor

[4] Mohammed Sabah, Akshay N, Manjunath M, Sudhir Rao Rupanagudi , 2018 , Real Time Rear Vehicle Monitoring & Detection System

[5] Abhijith Santhoshkumar, Aris Socorro, David Sheets, and Neel Sheth, Semi-Truck Blind Spot Detection System

[6] A. Hazizan1, N. A. Md Lazam and N. I. Hassan , 2020 , Development of Child Safety Car Alert System Using Arduino and GSM Module

[7] N. M. Z. Hashim, H. H. Basri, A. Jaafar, M. Z. A. A. Aziz, A. Salleh and A. S. Ja'afar, 2014 , CHILD IN CAR ALARM SYSTEM USING VARIOUS SENSORS

[8] Norizam Sulaiman, Kamarul Hawari Ghazali , Mohd Shawal Jadin , Amran Abdul Hadi , Muhammad Sharfi Najib , Mohd Salmizan Mohd Zain , Fatimah Abdul Halim1 , Suhaimi Mohd Daud , Nurdiyana Zahed and Abdul Adam Abdullah , 2017 , Development of comprehensive unattended child warning and feedback system in vehicle

[9] Rosnee Ahad1, Nur Suhaila Rosli, Mohamad Zaid Mustafa, 2021, Child Presence Detection Car Alarm System using GSM

[10] Nuradzimmah Daim (2020). Why kids are forgotten. Kuala Lumpur. Retrieved on 21st August 2020 from <u>https://www.nst.com.my/news/nation/2020/08/618208/why-kids-are-forgotten-cars</u>

[11] T. N. Alagesh (2020). Baby dies after being left inside the car. Retrieved on 17th February 2020 from <u>https://www.nst.com.my/news/nation/2020/02/566449/update-baby-dies-after-being-left-inside-car</u>

[12] Gerald Lye (2022). Motorist changing tyre on roadside get hit by lorry. Bukit Rotan. Retrieved on 3 June 2022 from <u>https://paultan.org/2022/06/03/motorists-changing-tyre-on-roadside-get-hit-by-lorry/</u>

[13] Fadzly Hanaffi (2019). Johor trailer crashes into car at junction after failing to see vehicle in its blind spot. Johor. Retrieved on 8 December 2019 from <u>https://worldofbuzz.com/watch-johor-trailer-crashes-into-car-at-junction-after-failing-to-see-vehicle-in-its-blind-spot/</u>

[14] Dewan rakyat addresses issue of children who died after accidentally being left in the car. Kuala Lumpur. Retrieved on 3 August 2020 from https://www.malaymail.com/news/malaysia/2020/08/03/dewan-rakyat-addresses-issue-ofchildren-who-died-after-accidentally-being/1890558