Page | i

IOT ACCIDENT DETECTION SYSTEM

RESHVIN GOVINDAN (08DEP20F1017)

JABATAN KEJURUTERAAN ELEKTRIK

SESI 1 2022/2023

POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

IOT ACCIDENT DETECTION SYSTEM

Student Name & Matrix No	RESHVIN
	GOVINDAN
	(08DEP0F1017)
Course Name	Diploma in Electronic (Communication)
Department	Department of Electrical Engineering
Course's Code	DEE50082
Supervisor Name	ANNAFAEDZATUL BINTI MOHD AMIN

CONFIRMATION OF THE PROJECT

The project report titled "IOT ACCIDENT DETECTION SYSTEM" has been submitted, reviewed and verified as a fulfills the conditions and requirements of the Project Writing as stipulated

Checked by:

Supervisor's name : Puan Annafaedzatul Binti

:

2

Mohd Amin

Supervisor's signature :

Date

Verified by:

Project Coordinator name :

Signature of Coordinator :

Date

DECLARATION

I hereby declare that the work in this report is my own except for material used form other sources has been clearly identified and properly acknowledged and referenced.

Signature :

Name : **RESHVIN GOVINDAN**

Registration No. : 08DEP20F1017

Date : 19 DECEMBER 2022

TABLE OF CONTENT

1. ACKNOWLEDGMENT
2. ABSTRACTvi
3. CHAPTER 11
1.0 INTRODUCTION1
1.1 PROJECT BACKGROUND
1.2 PROBLEM STATEMENT
1.3 OBJECTIVE4
1.4 SCOPE OF PROJECT4
1.5 IMPORTANT OF PROJECT4
4. CHAPTER 25
2.0 Introduction5
2.1 Literature Review Topic 1-35
2.2 SUMMARY8
3.0 Introduction
3.0 Introduction
3.0 Introduction
3.0 Introduction
3.0 Introduction
3.0 Introduction
3.0 Introduction .9 3.1 PROJECT DESIGN AND OVERVIEW .9 3.2 PROJECT HARDWARE .12 3.3 PROJECT SOFTWARE .17 3.4 PROTOTYPE DEVELOPMENT .18 3.5 SUMMARY .19 6. CHAPTER 4 .20
3.0 Introduction .9 3.1 PROJECT DESIGN AND OVERVIEW .9 3.2 PROJECT HARDWARE .12 3.3 PROJECT SOFTWARE .17 3.4 PROTOTYPE DEVELOPMENT .18 3.5 SUMMARY .19 6. CHAPTER 4 .20 4.0 EXPECTED RESULT .20
3.0 Introduction .9 3.1 PROJECT DESIGN AND OVERVIEW .9 3.2 PROJECT HARDWARE .12 3.3 PROJECT SOFTWARE .17 3.4 PROTOTYPE DEVELOPMENT .18 3.5 SUMMARY .19 6. CHAPTER 4 .20 4.0 EXPECTED RESULT .20 7. APPENDICES .23
3.0 Introduction .9 3.1 PROJECT DESIGN AND OVERVIEW .9 3.2 PROJECT HARDWARE .12 3.3 PROJECT SOFTWARE .17 3.4 PROTOTYPE DEVELOPMENT .18 3.5 SUMMARY .19 6. CHAPTER 4 .20 4.0 EXPECTED RESULT .20 7. APPENDICES .23 Appendix 1:Gantt Chart .23
3.0 Introduction 9 3.1 PROJECT DESIGN AND OVERVIEW 9 3.2 PROJECT HARDWARE 12 3.3 PROJECT SOFTWARE 17 3.4 PROTOTYPE DEVELOPMENT 18 3.5 SUMMARY 19 6. CHAPTER 4 20 4.0 EXPECTED RESULT 20 7. APPENDICES 23 Appendix 1:Gantt Chart 23 Appendix 2:Datasheet 24
3.0 Introduction 9 3.1 PROJECT DESIGN AND OVERVIEW 9 3.2 PROJECT HARDWARE 12 3.3 PROJECT SOFTWARE 17 3.4 PROTOTYPE DEVELOPMENT 18 3.5 SUMMARY 19 6. CHAPTER 4. 20 4.0 EXPECTED RESULT 20 7. APPENDICES 23 Appendix 1:Gantt Chart 23 Appendix 2:Datasheet 24 Appendix 3:Program Coding 25
3.0 Introduction 9 3.1 PROJECT DESIGN AND OVERVIEW 9 3.2 PROJECT HARDWARE 12 3.3 PROJECT SOFTWARE 17 3.4 PROTOTYPE DEVELOPMENT 18 3.5 SUMMARY 19 6. CHAPTER 4 20 4.0 EXPECTED RESULT 20 7. APPENDICES 23 Appendix 1:Gantt Chart 23 Appendix 2:Datasheet 24 Appendix 3:Program Coding 25 Appendix 4:Questionnaire 28

ACKNOWLEDGMENT

I gave this project my best effort. It would not have been possible, though, without the kind support and cooperation of many people and organisations. I would like to sincerely thank each and every one of them. I owe Mrs. Annafaedzatul binti Mohamad Amin a great deal for her guidance, regular oversight, and providing of the information required for the Project. I also value her assistance in finishing the Project.

I would want to express my gratitude to my parents and my supervisor for their excellent support and cooperation in helping me complete this assignment. I want to express my deep gratitude to the professionals who took the time to listen to me so intently.I am extremely grateful to my parents for their love, prayers, caring and sacrifices for educating and preparing me for my future. Also, I express my thanks to my sisters and brothers for their support and valuable prayers. My special thanks to my friends for the keen interest shown to complete this project successful.

ABSTRACT

With an increase in population, there is an increase in the number of accidents that happen every minute. These road accidents are unpredictable. There are situations where most of the accidents could not be reported properly to nearby ambulances on time. In most of the cases, there is the unavailability of emergency services which lack in providing the first aid and timely service which can lead to loss of life by some minutes. Hence, there is a need to develop a system that caters to all these problems andcan effectively function to overcome the delay time caused by the medical vehicles. The purpose of this paper is to introduce a framework using IoT, which helps in detecting car accidents and notifying them immediately. This can be achieved by integrating smart sensors with a microcontroller within the car that can trigger at the time of an accident. The other modules like GPS and GSM are integrated with the system to obtain the location coordinates of the accidents and sending it to registered numbers and nearby ambulance to notify them about the accident to obtain immediate help at the location.

CHAPTER 1 INTRODUCTION

1.0 INTRODUCTION

Road accidents have become very common nowadays. As more and people are buying automobiles, the incidences of road accidents are just increasing day by day. Furthermore, people have also become more careless now. Not many people follow the traffic rules. Especially in big cities, there are various modes of transports. Moreover, the roads are becoming narrower and the cities have become more populated. Thus, road accidents are bound to happen. You pick up a newspaper and you will find at least one or two news about road accidents daily. They cause loss of life as well as material. People need to be more careful when on the road, no matter which mode of transport you are from. Even the ones on foot are not safe because of the rise in these incidences. Every day people witness accidents in the news, from relatives and even with their own eyes.

IOT ACCIDENT DETECTION SYSTEM is a way to help road users. As we already know in 2020 the number of deaths due to vehicle user accidents is 3692. This shows us a significant increase compared to the previous year. as an engineer I have thought of a way to reduce accidents by building a system that can detect accidents.

This system has an accelerometer that will detect vibrations and angle changes. with this system, all impacts with the vehicle will be detected. it only takes 3 seconds to send information to the entire system. This system has also been determined with the angle position with the help of studies that have been done.

with this help, all important user accident information will be sent to a number that has been set to help users get help faster.

THE TIMES OF INDIA

Explainers Videos City	India World Busines	s Tech Cricket	Sports	Entertainment	Auto TV	Web Series	Life & Style	Education	•••	ର ≡
Business EWS / Topic										
Accident										x Q
howing 137602 results										
o le										
	Accid	ent								
accident is a sudden u	nfortunate incident	that happens	unexpect	edly and uni	ntentiona	ally, typically	/			
esulting in major caus	alities, damage or in	ijury. Every day	/ hundred	ds of acciden	t is report	ed in media	a across			
ndia including road a d	c <mark>cidents</mark> , plane crasł	n, train accide	nts every	day.						
he accident usually ha	appens suddenly wit	thout any inte	nt or volit	ion although	sometin	nes due to				

The accident usually happens suddenly without any intent or volition although sometimes due to carelessness, ignorance or combination of causes and that produces an unfortunate result i,e, injury for which the affected party may be entitled to relief under the law or to compensation under an insurance policy.

I

EXAMPLE OF AN ACCIDENT ARTICLE

1.1 PROJECT BACKGROUND

In this study, several angle measures will be examined. What are the challenges that develop, notably influencing the impact received, network, and function, and how well can this system detect impact determines the effectiveness of the market suspension by examining whether it is affordable, fits the standards, and functions properly. Despite recent improvements attributed to graduated driver licensing, young drivers ' high rates of traffic crashes, injuries, and fatalities, and the high monetary costs of crashes are clearly unacceptable. Young people today are driving in a more complex traffic environment than ever before. There are more cars, more congestion, more complex intersections, and roadways, and today ' s drivers are clearly vehicles and roadways, driver behavior remains frustratingly less than ideal. Traffic enforcement alone can never adequately control driver behavior officers cannot be always in all places. Novice drivers are influenced by the complexity of this environment as well as the many other factors in their lives.

1.2 PROBLEM STATEMENT

Issues, particularly for users of vehicles. Due to the lack of precise location information, emergency assistance is frequently delayed after an accident. This delay can be a very serious situation because it could mean life or death. Additionally, accident victims are unable to speed dial emergency services since there is a good chance that they will be hurt during the collision and unable to do so, or that their phone will be shattered or lost in the aftermath of the collision. In addition, the general public, particularly the younger generation, does not comprehend the value of safe driving practices and has a tendency to drive carelessly.

1.3 OBJECTIVE

The project is implemented to achieve the following objectives which are:

- I) To develop an IOT based software that can rescue victims
- II) To design a hardware that can detect accidents.

1.4 SCOPE OF PROJECT

The target audience for this project is automobile owners because the device can be kept there without slipping out, unlike if it were put in a motorcycle. In addition, because they are less experienced and fresh to the world of driving, the younger generation is also the target audience for this initiative.

1.5 IMPORTANT OF PROJECT

For accident victims who struggle with delayed emergency aid, this effort is crucial. When an accident occurs in an area with no civilians, they frequently encounter scenarios where they are unaware to act by calling for help because they are unconscious.

CHAPTER 2 LITERATURE REVIEW

2.0 Introduction

This chapter extend the literature reviews that cater the information in accordance with the method of this project. The relevant information and other extra features were gathered as shown below.

2.1 Literature Review Topic 1-5

Item/Title	Paper 1	Paper 2	Paper 3	Paper 4	Paper 5
Objectives	The purpose of	The Internet of	we proposed	This paper is	Vehicle
Objectives	this paper is to	Things (IoT)	and	useful in	collision
	introduce a	can be used to	implemented	detecting the	detection is
	using IoT, which	produce an	an IoT system	accident	one of the
	helps in	automatic	which may help	precisely by	essential thing
	detecting car	notification and	the community	means of both	in public place
	notifying them	response to the	decreasing the	vibration	to detect the
	immediately.	scene A signal	death rates	sensor and	around truth
	This can be achieved by	from an	resulting from	Alcohol	behind a
	integrating	accelerometer	vehicles	detection eve	
	smart sensors	and a GPS	accidents	blink sensor	The collision
	microcontroller	sensor are	Regulte	As there is a	hetween the
	within the car	automatically	showed that	scope for	vehicles are
	that can trigger	sent to the	this solution	improvement	monitored
	accident. The	cloud and from	provided many	and as a future	monitored
	other modules	there an alert		implementation	time by the
	like GPS and GSM are	message will be	compared to	we can add a	
	integrated with	received by	traditional		or by the
	the system to	whoover is	systems	webcom for	on by the
	location	subscribed to	systems,	conturing the	
	coordinates of	that car Tho	minimizing	imagas which	
	the accidents		iniurad	will bolo in	
	registered	signal will		will help in	public
	numbers and	indicate the	passengers	providing	
	ambulance to	sevenity of the			
	notify them	accident and	providing basic	assistance.	
	about the	the GPS			detecting
	obtain				
	immediate help	ampulance Will	rescue teams,		CONSION
	at the location.	use the GPS	recognizing		scenes

Summary paper

			-		Page 6
		coordinates to	exact and		happening in
		get to the scene	accurate		the most
		quickly.	accidents		crowded area.
			locations, and		All such
			facilitating the		detection
			routing		cameras and
			process.		systems are
					connected with
					wired
					communication
					to such extent
					only.
Problem	Nowadays,	When there is a	The challenges	The advent of	Vehicle
Statement	increase in the	car accident	imposed to	technology has	collision
	number of	someone has to	local PSOs in	also increased	detection is
	accidents that	actively seek	saving human	the traffic	one of the
	world. As the	help such as	lives resulting	hazards and	essential thing
	population is	calling 911 for	from vehicles	the road	in public place
	increasing,	emergency	accidents have	accidents take	to detect the
	number of cars	services. There	become a	place	ground truth
	increasing on	is no automatic	crucial concern	frequently	behind a
	the road that	notification to	due to the huge	which causes	collision scene.
	severe	the police,	aforementioned	huge loss of life	Most of the
	accidents that	ambulance,	number of	and property	transmission
	happen daily.	friends, or	departed	because of the	poles are kept
	cent of	family.	people. As far	poor	on the public
	accidents		as many injured	emergency	places for
	loss of many		could lose their	facilities. Our	providing a
	lives. Mostly,		lives. and since	proiect will	better
	the growing		no on-site	provide an	communication
	countries are		medical	optimum	signal and the
	by the day to		assistance has	solution to this	electric supply
	day road		been provided	draw back	The road side
	accidents.		promptly as a	diaw back.	transmission
			rocult of: (1)		
			lete cocident		poles ale
					extremely not
			reporting, (2)		protected with
			inaccurate		any safety
			geographic		devices. Those
			location, and		poles are
			(3) lack of		standing on its
			injured medical		own strength
			information, the		on the
			need for		materials used
			automated and		for making the

					Page 7
			intelligent		poles. Due to
			mobile solution		aging and
			tackling this		several other
			burden		factors there
			becomes a		are chances
			must.		for such poles
					to get damage
					very easily
Methodology	In our approach.	In this system.	The IoT device	Our proiect will	The
inethodology	we are	there will be an	encompasses	provide an	transmission
	addressing the	automatic	four modular	optimum	poles are
	dans by adding	response to an	components:	solution to this	usually be in
	an	accident The	shock sensor	draw back	two types One
	accelerometer	use of sensors	GPS NEC	According to	type is made
	vibration concor	use of sensors	reader and	this project	up of motole
				this project	up of metals
	and most			when a vehicle	and the other
	Importantly	to detect an	Inose	meets with an	type is made
	heartrate	accident and	combined	accident	up of cement
	sensor. These	send the	modules	immediately	concrete. Both
	components	location to the	altogether	Vibration	of these kind of
	contribute to the	Cloud. From the	spontaneously	sensor will	poles are
	hardware setup	Cloud, the	notify the	detect the	comes up with
	of the system.	notification is	rescue	signal or if a car	different
	Also, we would	sent to the	organization	rolls over, and	heights for
	like to introduce	hospital,	headquarter	vibration	transmitting
	an algorithm for	ambulance and	whenever an	sensor will	the electricity
	general road	emergency	accident takes	detects the	wires and other
	accidents that is	contacts. The	place, pinpoint	signal and	signal lines. As
	appropriate for	unit involves the	the exact	sends it to	these
	this hardware	use of a	location, and	RASPBERRY	transmission
	setup. We have	Raspberry Pi	recognize the	PI controller.	poles are kept
	considered a	single board	passengers	Alcohol	over the
	few parameters	computer and	inside the	detection, eye	roadside place,
	which are	GPS which	vehicle on the	blink is	it has more
	helpful for	takes	headquarter	performed by	chance for
	accident	advantage of	map. The	the	getting
	detection and	data such as	triggered	RASPBERRY	affected with
	notification.	position and	sensor signal	PI	small and huge
	These	location. The	reports the	Microcontroller	vehicle
	parameters are	device is meant	vehicle's	sends it alert	collision
	vehicle	to immediately	identifier along	mail through	During such
	acceleration	detect o	with the	the IOT to the	condition the
	retardation	collision	accident's	narente or o	transmission
	crash import	involving the	location which	rescue toom	
	the volue of			So the nerver	kont og it ig
			appear on a		Nopi as it is

					P a g e 8
	heart rate	installed in. This	web-based	can	with the
	sensor	is done using	interface in the	immediately	damage part to
	(embedded	the ADXL345	rescue center.	then after	continue its
	within the belt)	accelerometer.	This enables	conforming the	service
	and information		the rescue	location	
	of accident		teams to	necessary	
	location which is		respond	action will be	
	tracked by GPS.		immediately	taken.	
	It is then sent to				
	emergency				
	services/family				
	members by				
	GSM				
	communication.				
Sensor Used	Arduino, GPS,	Temperature	GPS, NFC	Vibration	Vibration
	Vibration	sensor,	reader, cellular	sensor, alcohol	sensor,
	sensor, heart	heartbeat	loT	sensor	microcontroller
	rate sensor,	sensor, mems			
	accelerometer	sensor, GSM			

1. Paper 1: IoT based car accident detection and notification algorithm for general road accidents

-With an increase in population, there is an increase in the number of accidents that happen every minute. These road accidents are unpredictable. There are situations where most of the accidents could not be reported properly to nearby ambulances on time. In most of the cases, there is the unavailability of emergency services which lack in providing the first aid and timely service which can lead to loss of life by some minutes. Hence, there is a need to develop a system that caters to all these problems and can effectively function to overcome the delay time caused by the medical vehicles. The purpose of this paper is to introduce a framework using IoT, which helps in detecting car accidents and notifying them immediately. This can be achieved by integrating smart sensors with a microcontroller within the car that can trigger at the time of an accident. The other modules like GPS and GSM are integrated with the system to obtain the location coordinates of the accidents and sending it to registered numbers and nearby ambulance to notify them about the accident to obtain immediate help at the location.

2. Paper 2: Smart Car: An IoT based accident detection system

-The Internet of Things (IoT) offers limitless possibilities to both the public and private sectors. Automobile manufacturers are interested in IoT applications to increase the safety of their vehicles, to meet customers' demands and ultimately to offer cutting-edge products which maximize profit. The healthcare industry is concerned with how the IoT can improve the speed and accuracy of communication. This paper describes the feasibility of equipping a vehicle with technology that can detect an accident and immediately alert emergency personnel. When there is a car accident someone has to actively seek help such as calling 911 for emergency services. There is no automatic notification to the police, ambulance, friends, or family. The Internet of Things (IoT) can be used to produce an automatic notification and response to the scene. A signal from an accelerometer and a GPS sensor are automatically sent to the cloud and from there, an alert message will be received by whoever is subscribed to that car. The signal will indicate the severity of the accident and the GPS location. The ambulance will use the GPS coordinates to get to the scene quickly.

3. Paper 3: An IoT approach to vehicle accident detection, reporting, and navigation

-One particular concern that Public Safety Organizations (PSO) must account for whilst engaging in many activities is decreasing the effect of vehicle accidents, aiding as many injured people as possible and providing 24/7 on the spot rescue. The Red Cross humanitarian organization is one of the most known PSOs to be present on-site whenever an accident or a disaster takes place. However, some of the rescue teams face difficulty in reaching the injured people to due late alerts and insufficient information of the specific accident location. The advent of the mobile phone and Internet of Things (IoT) industries reshaped the way people communicate and brought a paradigm shift to public and private services [1]. This everevolving technology marked the beginning of new era affecting the lives of people and various businesses. This paper conveys a smart and reliable IoT system solution which instantly notifies the PSO headquarter whenever an accident takes place and pinpoints its geographic coordinates on the map. When an accident takes place, a shock sensor detects it. Then, an algorithm is applied to process the sensor signal and send the geographic location along with some ancillary information to the PSO headquarter, indicating accident occurrence. This is a promising system expected to aid in the tedious rescuing process by reporting in a matter of seconds the location of an accident, the passengers injured, blood types, thus lowering death's rates. The geographical data collected from this system could be relied upon as admissible evidence or indicator of the road state and conditions.

4. Paper 4: Sign Board monitoring and vehicle accident detection system using IoT

-The Rapid growth of technology and infrastructure has made our lives easier. The advent of technology has also increased the traffic hazards and the road accidents take place frequently which causes huge loss of life and property because of the poor emergency facilities. Our project will provide an optimum

solution to this draw back. According to this project when a vehicle meets with an accident immediately Vibration sensor will detect the signal or if a car rolls over, and vibration sensor will detects the signal and sends it to RASPBERRY PI controller. Alcohol detection, eye blink is performed by the RASPBERRY PI Microcontroller sends, it alert mail through the IOT to the parents or a rescue team. So the person can immediately then after conforming the location necessary action will be taken. If the person meets with a small accident or if there is no serious threat to anyone's life, then the alert message can be terminated by the driver by a switch provided in order to avoid wasting the valuable time of the medical rescue team. This paper is useful in detecting the accident precisely by means of both vibration sensor and Alcohol detection, eye blink sensor.. As there is a scope for improvement and as a future implementation we can add a wireless webcam for capturing the images which will help in providing driver's assistance.

5. Paper 5: A Wireless collision detection on transmission poles through IoT technology

-Transmission poles plays a major in the wired telecom communication as well as in the electrical transmission. The wireless communication receivers and antennas are also need poles for holding the antenna and several other peripheral units to its nearby. Most of the transmission poles are kept on the public places for providing a better communication signal and the electric supply. The road side transmission poles are extremely not protected with any safety devices. Those poles are standing on its own strength on the materials used for making the poles. Due to aging and several other factors there are chances for such poles to get damage very easily. Vehicle collision is an important factor in damaging the transmission poles kept near the road side. The proposed method is designed to identify the collision detection on the poles to alert the maintenance team to take immediate action against the faulty poles. It is achieved with the help of IoT technology connecting several peripheral units to a microcontroller.

2.2 SUMMARY

After reading the paper in the literature study, I discovered that the accelerometer sensor is the most crucial element of our project; without it, the project would be useless. I also discovered that the Wi-Fi module is crucial. In addition, in order to determine whether or not there has been an accident, we must calculate the angle of the car and its speed and set those values to the device. y-axis z-axis.

CHAPTER 3 METHODOLOGY

3.0 Introduction

Methodology is the systematic, theoretical analysis of the methods applied to a field of study. It comprises the theoretical analysis of the body of methods and principles associated with a branch of knowledge. Typically, it encompasses concepts such as paradigm, theoretical model, phases and quantitative or qualitative techniques.

To realize this Project as a product that ready to use with safety characteristic, a very comprehensive plan is undertaking. A step-by-step procedure is done so that the Project can be completed in time. Data was gathered because of earlier study conducted by other academics using books, periodicals, papers, and the internet. This previous study alludes to previous research, and this research was conducted to supplement the thesis title's research.

3.1 PROJECT DESIGN AND OVERVIEW

3.1.1 BLOCK DIAGRAM OF THE PROJECT

Figure 3.1 :Block diagram of the project

Figure 3.2 : Flowchart of the project

3.1.3 PROJECT DESCRIPTION

Based on the research and methods from the summary we are making a device that can detect accidents and send help so that victims can get rescued faster. We plan to do this by using accelerometer to detect the accidents and Wifi module to detect location and also a software to send the accident call and text.

3.2 PROJECT HARDWARE

3.2.1 SCHEMATIC CIRCUIT

Figure 3.2.1 : Schematic Circuit

3.2.2 DESCRIPTION

A circuit diagram is a graphical representation of an electrical circuit. A circuit diagram, also called an electrical diagram, elementary diagram, or electronic schematic, is a simplified graphical representation of an electrical circuit. Circuit diagrams are used for the design, construction and maintenance of electrical and electronic equipment.

3.2.2.1 ACCELEROMATER

Figure 3.4

Arduino/Genuino UNO is a microcontroller board based on the ATmega328P. It has 14 digital input/output pins (of which 6 can be used as PWM outputs), 6 analog inputs, a 16 MHz quartz crystal, a USB connection, a power jack, an ICSP header and a reset button. It contains everything needed to support the microcontroller.

3.2.2.2 WIFI MODULE ESP8266

Figure 3.5: ESP8266

The ESP8266 WIFI module is a self contain SOC with integrated TCP/IP protocol stack that can give any microcontroller access to a WIFI network. These module is capable of either hosting an application or offloading all WIFI networking functions from another application processor.

3.2.2.3 BUZZER

Figure 3.6 : BUZZER

To issue orders, this component is used. Only so that they can decide whether to continue allowing the system to send information to the emergency number or not, this is meant to educate automobile accident victims.

3.2.2.4 RESET BUTTON

Figure 3.7 : RESET BUTTON

This component aims to reset the system if there is any problem with the device

3.2.2.5 ACRYLIC CASING

Figure 3.8 : Acrylic casing

To avoid the device from getting damaged by the impact of accident.

3.2.3 CIRCUIT OPERATION

In this circuit, I used Wifi Module as microcontroller to read the sensors(accelerometer) and then send it to the device connected. In the same time, the ESP8266 Wi-Fi module sends the GPS location with a premade text and call as well.

3.3 PROJECT SOFTWARE

3.3.1 FLOWCHART OF THE SYSTEM

Figure 3.3.1 Flowchart System

3.3.2 DESCRIPTION OF FLOWCHART

Figure 3.3.1 shows the flowchart system of the project. At the beginning, the Wi-Fi module connects to the Wi-Fi for sending out calls and to connect to the smartphone. Then the accelerometer is used to detect the severity of the accident. Next, Buzzer makes noise so people around will be alerted when the accident occurs. After that, your location will sent to the number saved as the emergency contact, then the prewritten text and a call will go through to inform the emergency contact.

3.4 PROTOTYPE DEVELOPMENT

3.4.1 PRODUCT LAYOUT

Figure 3.4

3.5 SUMMARY

This chapter had explained that the result of the project has a great success rateas it develop well in the community. So much that I had learned from the resultand gradually practice it in this new norm. Even with so many hurdles I crossedpath, I had continuously gotten better to overcome the problem so as result it happen with flying colors. As the method I used, I had could do many of the electrical practices that been learn especially for the programming and the engraving machine. As already discussed, I have learned that this project is a good achievement for myself and others. I can see that this project brings me many good advantages as well as achieving the objective. For me, this project is a goodstart to gain more experience and knowledge about engineering and can lead us to help more people in the future as electrical engineering students. I use the process of 3D printing and engraving to make prototypes, and the material I use is acrylic. Acrylic is recyclable and biodegradable, making it the most environmentally friendly filament.

CHAPTER 4

4.0 EXPECTED RESULT

We have found a proper implementation model that includes a variety of sensor devices and other modules. In this implementation model we used ATMEGA 328 with Wi-Fi module. Inbuilt ADC and Wi-Fi module connects the embedded device to internet. Sensors are connected to Arduino UNO board for monitoring, ADC will convert the corresponding sensor reading to its digital value and from that value the corresponding environmental parameter will be evaluated. After sensing the data from different sensor devices, which are placed in particular area of interest. The sensed data will be automatically sent to the web server, when a proper connection is established with sever device.

P a g e | **24**

Figure 4 shows the data of monitoring that been taking from Blynk app.

oo (COM3						-	_		\times
										Send
24	0	112								~
24	8	172								
23	8	174								
23	8	174								
24	8	172								
24	8	172								
24	9	173								
24	9	173								
22	9	173								
22	9	173								
24	9	172								
24	9	172								
24	7	173								
24	7	173								
23	7	172								
23	7	172								
24	7	173								
24	7	173								
24	8	171								
24	8	171								
24	11	175								
										~
🗸 Αι	utoscroll	m promond Pinas	d last astiking w	oon madii	Newline	\sim	9600 baud	\sim	Clear	output

				Page
🥺 CO	M3		- 0	×
				Send
24	0	175		~
24	8	175		
24	9	174		
24	9	174		
21	96	216		
21	96	216		
54	-66	129		
54	-66	129		
-8	-131	-34		
-8	-131	-34		
-20	-37	-150		
-20	-37	-150		
-17	0	-161		
-17	0	-161		
-19	-3	-153		
-19	-3	-153		
-19	-3	-152		
-19	-3	-152		
-22	-3	-154		
-22	-3	-154		
-16	0	-156		
Auto	scroll		Newline V 9600 baud V Clear	output

FIGURE 4.0: DATA MONITORING

Figure 5 shows the line graph based on data.

FIGURE 5 : GRAPH OF DATA MONITORING

Figure 6, The figure displays the resulting the accelerometers sensor condition and resulting values are displayed to the LCD or mobile app in real-time.

FIGURE 6.0 DATA MONITORING FROM APP BLYNK

APPENDICES

Appendix 1:Gantt Chart

10 plan) %C	* COMPONENT AND CIRCUIT TESTING 12 2 12 3 0% RM0.00 * DOCUMENT WRITING REPORT(FINAL PROPOSAL) 2 13 2 13 0% RM10.00 * PROPOSAL WRITING 9 6 9 6 0% RM0.00	* COMPONENT AND CIRCUIT TESTING 12 2 12 3 0% RM0.00 * DOCUMENT WRITING REPORT(FINAL PROPOSAL) 2 13 2 13 0% RM10.00	* COMPONENT AND CIRCUIT TESTING 12 2 12 3 0% RM0.00		SOLDERING TOOLS AND TECHNIQUE 12 1 12 2 0% RM30.00	PRODUCE PCB USING ETCHING OR CNC MILING 12 1 12 1 0% RM00.00	PRODUCE PCB DESIGN LAYOUT 11 1 11 2 0% RM0.00	PRODUCE CIRCUIT SCHEMATIC AND CIRCUIT SEMULATION 10 2 10 3 0% RM0.00	CONSTRUCT GRAPHICS/ TABLES/ DIAGRAM 10 2 10 3 0% RM0.00	PRUCHASE COMPONENTS AND MATERIALS 8 2 8 2 0% RM232.00	PROJECT PROGRESS[8 7 8 7 0% RM0.00	PREPARE AND SUBMIT THE INVESTIGATION REPORT 7 1 7 2 0% RM0.00	DRAW THE SCHEMATIC CIRCUIT OF THE PROJECT 7 1 7 2 10% RM0.00	DRAW A FLOWCHART OF PROJECT FLOW 3 4 3 5 0% RM0.00	SEARCH ONLINE THE LITERATURE REVIEW 1 1 1 1 2 0% RM0.00	PRESENT 3 SELECTED PROJECTS TO LECTURER 1 3 1 4 100% RM0.00	FIND INFORMATION ABOUT A PROJECT THAT RELATED TO 1 1 1 2 80% RM0.00	INVESTIGATION REPORT 1 7 1 8 50% RM0.00	PLAN PLAN ACTUA ACTUA PERCE Inscrete Miscul Lessol Lassol Lessol Lassol <thlessol lassol<="" th=""> <thlessol lassol<="" th=""> Le</thlessol></thlessol>	MUHAMMUAQULISYRAFERNINCHUSURRI (1880.4/2)F1010 Veek: 1 /////// Plan Duration ////// Actual Start Complete ////// Actual (beyond plan) 2/ Co
-------------	--	--	---	--	--	--	---	--	---	---	---	---	--	--	---	---	---	---	--	---

Appendix 2:Datasheet

Budget of The Project

NO	COMPONEN	RM	QUANTITY	TOTAL (RM)
1.	WIFI MODULE	33.00	1	33.00
2.	BUZZER	3.00	1	3.00
3.	ACCELEROMETTER	20.00	1	20.00
4.	RESET BUTTON	3.00	1	3.00
5.	ACRYLIC	10.00	1	10.00
	RM69.00			

Appendix 3: Program Coding

1.Programming for display LCD

//Working with ESP-01
#define BLYNK_PRINT Serial

#include <ESP8266WiFi.h>
#include <BlynkSimpleStream.h>
#include "Wire.h" // This library allows you to communicate with I2C devices.

#define Buzz D3

// Your WiFi credentials.
// Set password to "" for open networks.
const char* ssid = "WIFI";
const char* pass = "12345678";

```
// You should get Auth Token in the Blynk App.
// Go to the Project Settings (nut icon).
char auth[] = "6a4Ep0AUj4lXh9zGmYKKqEpNP458z5Vg";
char server[] = "139.59.206.133";
```

```
int indexs=0;
int Alarm=0,Alarm1=0;
int TMPX=0;
int Almxx=0;
float IV=0,0ldIV=0;
float PerIV=0,OldPerIV=0;
int MODE=0;
int Beat, BPM, SPO2;
int Counter,BeatCycle = 0;
int countsend=0;
int cycle=0; float voltage=0;
String DATA="";
int P1=0, P2=0, P3=0, P4=0;
int Rly1=0, Rly2=0, Rly3=0, Rly4=0, Rly5=0;
int led1x=0,led2x=0,led3x=0,led4x=0;
int TotalUse=0;
int TotalAvai=0;
float Temp1=30.1423;
float PH=7;
float Temp2=30.2;
String Flat;
String Flon;
String Temp1x="";
String PHx="";
String Temp2x="";
String Temp1y="";
String PHy="";
String Temp2y="";
String Temp3y="";
String Temp3x="";
String Temp4y="";
```

```
String Temp4x="";
float latx,lonx;
int Timer=0;
int Mode=0;
int DataIn=0;
int ALERT=0;
float Sens1=0;
int ID=1;
String lats,lons;
String locationX="";
float lat,lon,alt,spd;
float oldlat, oldlon;
String loc;
WiFiClient wifiClient;
// This function tries to connect to the cloud using TCP
bool connectBlynk()
{
 wifiClient.stop();
 // return wifiClient.connect(BLYNK_DEFAULT_DOMAIN, BLYNK_DEFAULT_PORT);
  return wifiClient.connect(server, BLYNK_DEFAULT_PORT);
}
// This function tries to connect to your WiFi network
void connectWiFi()
{
  Serial.print("Connecting to ");
  Serial.println(ssid);
  if (pass && strlen(pass)) {
   WiFi.begin((char*)ssid, (char*)pass);
  } else {
   WiFi.begin((char*)ssid);
  }
  while (WiFi.status() != WL_CONNECTED) {
   delay(500);
    Serial.print(".");
  }
}
BLYNK_WRITE(V4)
{
   lat=param[0].asFloat();
   lon=param[1].asFloat();
   alt=param[2].asFloat();
   spd=param[3].asFloat();
}
WidgetMap myMap(V3);
//----- Manage Virtual Pin------
BLYNK_WRITE(V10)
```

```
{
  int pinValue = param.asInt(); // assigning incoming value from pin V1 to a variable
  Rly1=pinValue;
  if (Rly1==1){
   Alarm=0;
   Alarm1=0;
   Blynk.virtualWrite(V0, "NORMAL");
  }
  // process received value
}
BLYNK WRITE(V11)
{
  int pinValue1 = param.asInt(); // assigning incoming value from pin V1 to a variable
  Rly2=pinValue1;
  // process received value
}
BLYNK_WRITE(V12)
{
  int pinValue3 = param.asInt(); // assigning incoming value from pin V1 to a variable
  Rly3=pinValue3;
  // process received value
}
BLYNK_WRITE(V13)
{
  int pinValue4 = param.asInt(); // assigning incoming value from pin V1 to a variable
 Rly4=pinValue4;
}
BLYNK_WRITE(V14)
{
  int pinValue5 = param.asInt(); // assigning incoming value from pin V1 to a variable
 Rly5=pinValue5;
}
//-----
const int MPU_ADDR = 0x68; // I2C address of the MPU-6050. If AD0 pin is set to HIGH, the I2C
address will be 0x69.
int16_t accelerometer_x, accelerometer_y, accelerometer_z; // variables for accelerometer raw
data
int16_t gyro_x, gyro_y, gyro_z; // variables for gyro raw data
int16_t temperature; // variables for temperature data
char tmp_str[7]; // temporary variable used in convert function
String Temp,x,y,z;
char* convert_int16_to_str(int16_t i) { // converts int16 to string. Moreover, resulting strings
will have the same length in the debug monitor.
  sprintf(tmp_str, "%6d", i);
```

```
return tmp_str;
}
void setup()
{
pinMode(Buzz,OUTPUT);
 Serial.begin(9600);
 Wire.begin();
 Wire.beginTransmission(MPU_ADDR); // Begins a transmission to the I2C slave (GY-521 board)
 Wire.write(0x6B); // PWR_MGMT_1 register
 Wire.write(0); // set to zero (wakes up the MPU-6050)
 Wire.endTransmission(true);
 connectWiFi();
 connectBlynk();
 Blynk.begin(wifiClient, auth);
delay(3000);
Blynk.virtualWrite(V0, "NORMAL");
digitalWrite(Buzz,HIGH);
delay(30);
digitalWrite(Buzz,LOW);
delay(30);
digitalWrite(Buzz,HIGH);
delay(30);
digitalWrite(Buzz,LOW);
delay(30);
}
void loop()
{
int xx=x.toInt();
int yy=y.toInt();
int zz=z.toInt();
xx=xx/100;
yy=yy/100;
zz=zz/100;
//-----
                                         -----
 countsend++;
  if (countsend>500){
  // Blynk.virtualWrite(V1, TMPX);
    Serial.print(xx);
Serial.print("\t");
Serial.print(yy);
Serial.print("\t");
Serial.print(zz);
```

Serial.println();

```
if (yy<-110 || yy>110){
    if (Alarm==0){
     Alarm=1;
      Blynk.virtualWrite(V0, "MINOR ACCIDENT!");
   }
  }
 if (zz<-100 || xx<-100){
   if (Alarm1==0){
     Alarm1=1;
      Blynk.virtualWrite(V0, "MAJOR ACCIDENT!");
   }
  }
 if (Alarm>0 || Alarm1>0){
   digitalWrite(Buzz,HIGH);
delay(30);
digitalWrite(Buzz,LOW);
delay(30);
digitalWrite(Buzz,HIGH);
delay(30);
digitalWrite(Buzz,LOW);
delay(30);
  }
 countsend=0;
 }
 if (zz<-200 || zz>300 ){
   if (Alarm==0){
      /*
     Alarm=1;
      Serial.println("ACCIDENT DETECTED!!");
   // Blynk.email("TEST@gmail.com", " EMERGENCY Need HELP!! at location", loc);
      Blynk.virtualWrite(V0, "ACCIDENT ALARM!!");
    // Blynk.email("test@gmail.com", "Need HELP!!", DATA);
  // Blynk.email("ACCIDENT ALERT.. Need HELP!! at location ", loc);
      String MSGG="ACCIDENT ALERT..NEED HELP, LOCATION: " + loc;
  //
      Blynk.notify(MSGG);
  //
  */
   }
  }
    if (zz>>-200){
      if (Alarm==1){
 // Alarm=0;
 // Blynk.virtualWrite(V0, "NORMAL");
      }
 }
```

```
//_
  //-----
  // Reconnect WiFi
 if (WiFi.status() != WL_CONNECTED) {
   connectWiFi();
   return;
  }
 // Reconnect to Blynk Cloud
 if (!wifiClient.connected()) {
   connectBlynk();
   return;
  }
 Blynk.run();
Timer++;
//locationX=String(lat) + "," + String(lon);
// loc="http://www.google.co.in/maps/place/" + String(lat) + "," + String(lon);
   // myMap.location(indexs,String(lat),String(lon),loc);
//if (oldlat!=lat){
// indexs++;
// oldlat=lat;
//
   myMap.location(indexs,String(lat),String(lon),loc);
//}
/*
if (Rly2==1){
Alarm=0;
    Blynk.notify("INCIDENT ACKNOWLEDGED..");
delay(1000);
Blynk.virtualWrite(V0, "NORMAL");
 }
 if (Rly1==1){
  indexs=0;
  locationX=String(lat) + "," + String(lon);
  loc="http://www.google.co.in/maps/"+locationX;
     myMap.location(indexs,String(lat),String(lon),loc);
```

```
}
if (Rly2==1){
```

```
}
*/
if (Timer > 1000){
/*
 if (oldlat!=lat){
  indexs++;
  oldlat=lat;
}
   locationX=String(lat) + "," + String(lon);
  loc="http://www.google.co.in/maps/place/"+locationX;
      myMap.location(indexs,String(lat),String(lon),loc);
 */
 Timer++;
Wire.beginTransmission(MPU_ADDR);
  Wire.write(0x3B); // starting with register 0x3B (ACCEL_XOUT_H) [MPU-6000 and MPU-6050
Register Map and Descriptions Revision 4.2, p.40]
  Wire.endTransmission(false); // the parameter indicates that the Arduino will send a restart.
As a result, the connection is kept active.
  Wire.requestFrom(MPU_ADDR, 7*2, true); // request a total of 7*2=14 registers
  // "Wire.read()<<8 | Wire.read();" means two registers are read and stored in the same</pre>
variable
  accelerometer_x = Wire.read()<<8 | Wire.read(); // reading registers: 0x3B (ACCEL_XOUT_H) and</pre>
0x3C (ACCEL_XOUT_L)
  accelerometer_y = Wire.read()<<8 | Wire.read(); // reading registers: 0x3D (ACCEL_YOUT_H) and</pre>
0x3E (ACCEL_YOUT_L)
  accelerometer_z = Wire.read()<<8 | Wire.read(); // reading registers: 0x3F (ACCEL_ZOUT_H) and</pre>
0x40 (ACCEL_ZOUT_L)
  temperature = Wire.read()<<8 | Wire.read(); // reading registers: 0x41 (TEMP_OUT_H) and 0x42</pre>
(TEMP_OUT_L)
  gyro_x = Wire.read()<<8 | Wire.read(); // reading registers: 0x43 (GYRO_XOUT_H) and 0x44
(GYRO_XOUT_L)
  gyro_y = Wire.read()<<8 | Wire.read(); // reading registers: 0x45 (GYRO_YOUT_H) and 0x46</pre>
(GYRO_YOUT_L)
  gyro_z = Wire.read()<<8 | Wire.read(); // reading registers: 0x47 (GYRO_ZOUT_H) and 0x48
(GYRO_ZOUT_L)
 // print out data
 // Serial.print("aX = "); Serial.print(convert_int16_to_str(accelerometer_x));
 // Serial.print(" | aY = "); Serial.print(convert_int16_to_str(accelerometer_y));
 // Serial.print(" | aZ = "); Serial.print(convert_int16_to_str(accelerometer_z));
  // the following equation was taken from the documentation [MPU-6000/MPU-6050 Register Map and
Description, p.30]
 // Serial.print(" | tmp = "); Serial.print(temperature/340.00+36.53);
```

x=convert_int16_to_str(accelerometer_x); y=convert_int16_to_str(accelerometer_y);

```
z=convert_int16_to_str(accelerometer_z);
 Temp=temperature/340.00+36.53;
// Serial.print(" | gX = "); Serial.print(convert_int16_to_str(gyro_x));
// Serial.print(" | gY = "); Serial.print(convert_int16_to_str(gyro_y));
// Serial.print(" | gZ = "); Serial.print(convert_int16_to_str(gyro_z));
  // delay
  Timer=0;
}
 while (Serial.available()) {
    // get the new byte:
    char inChar1 = (char)Serial.read();
  if (inChar1 == '*') {
      DataIn++;
    }
if (inChar1 == 'X'){
  if (ALERT!=1){
  DATA="";
  ALERT=1;
  DATA= "ALERT!";
  }
}
    while (DataIn > 0){
        while (Serial.available()) {
    // get the new byte:
    char inChar = (char)Serial.read();
    if (inChar == '*') {
     DataIn++;
    }
    if (inChar != '*' && inChar != '#' && DataIn==1) {
      Temp1x+=inChar;
    }
    if (inChar != '*' && inChar != '#' && DataIn==2) {
      Temp2x+=inChar;
    }
    if (inChar != '*' && inChar != '#' && DataIn==3) {
      Temp3x+=inChar;
```

```
}
  if (inChar != '*' && inChar != '#' && DataIn==4) {
  Temp4x+=inChar;
 }
 if (inChar == '#') {
  DataIn=0;
  Temp1y=Temp1x; PHy=PHx; Temp2y=Temp2x; Temp3y=Temp3x; Temp4y=Temp4x;
  Temp1x="";
  PHx=""; Temp2x=""; Temp3x="";
 }
   }
 }
******
*****
```

} }

Appendix 4: Questionnaire

NEED ANALYSIS / MARKET ANALYSIS

The questionnaires were distributed through to the several students in my class because this project is focused on the youth and 28 students responded.

Figure 1.0 Gender

Figure 1.0 The result of the questionnaires found that 60.7% of students that drive are males and that is also equivalent to 17 students. The balance is 39.3% or 11 students that are female drivers.

Figure 1.1 Who has met with and accident?

Figure 1.1 shows the percentage of students that met with an accident before. Majority of students 71.4% have met with an accident before.

Figure 1.2 shows that almost everyone thinks this product will be useful to them

Figure 1.3 Option on ambulance

Figure 1.3 shows that 85.7% of students think ambulances should be faster and arrive sooner.

Figure 1.4 Option on product as a driver

In Figure 1.4 on a scale of 1-5 and 5 being the most interested, 50% (14 students) are very interested in this product as a driver themselves and 2 people are not interested

REFERENCES

- 1. <u>https://ieeexplore.ieee.org/abstract/document/6317382</u>
- 2. https://ieeexplore.ieee.org/abstract/document/7002645
- <u>https://www.researchgate.net/profile/Zainab-Alwan-</u>
 <u>5/publication/291356742 Car Accident Detection and Notification System Using Smartphone/link</u>
 <u>s/56a4dbac08aeef24c58ba6fc/Car-Accident-Detection-and-Notification-System-Using-</u>
 <u>Smartphone.pdf</u>
- 4. https://ieeexplore.ieee.org/abstract/document/8620131
- 5. <u>https://www.sciencepubco.com/index.php/ijet/article/view/18953</u>
- 6. <u>https://www.ijert.org/automatic-vehicle-accident-detection-and-messageing-system</u>
- 7. <u>https://owlcation.com/academia/Why-Research-is-Important-Within-and-Beyond-the-Academe</u>
- http://ce.sc.edu/cyberinfra/docs/publications/An%20IoT%20Approach%20to%20Vehicle%20Acci dent Detection,%20Reporting,%20and%20Navigation.pdf
- 9. https://www.fierceelectronics.com/sensors/what-accelerometer
- 10. https://www.researchgate.net/publication/352750304 INVESTIGATION OF WI-
- 11. <u>https://www.academia.edu/35132510/LASER_LIGHT_SECURITY_ALARM_SYST_EM_A_Project_Study_Presented_to_In_Partial_Fulfillment_of_the_Requirement_for</u>
- 12. Educ 418 Special Research Project Presented by