FLUID MECHANIGS

MOMENTUMEQUTION - PROBLEM SOLVING

MASWIRA BINTI MAHASAN ZURINA BINTI SAFEE FARIHAH BT MANSOR

FLUID MECHANICS

MOMENTUM EQUATIONPROBLEMSOLVING

WRITERS

Maswira binti Mahasan
Zurina binti Safee
Farihah binti Mansor

POLITEKNIK SULTAN
SALAHUDDIN ABDUL AZIZ SHAH

$$
2022
$$

ALL RIGHTS RESERVED

No part of this publication may be reproduced, distributed, or transmitted in any form or by any means, including photocopying, recording or other electronic or mechanical methods, without the prior written permission of Politeknik Sultan Salahuddin Abdul Aziz Shah.

AUTHORS

Maswira binti Mahasan
Zurina binti Safee
Farihah binti Mansor

elSBN No.:

First published in 2022 by:

UNIT PENERBITAN

Politeknik Sultan Salahuddin Abdul Aziz Shah
Persiaran Usahawan
Seksyen U1
40150 Shah Alam
Selangor

Telephone No.: 0351634000
Fax No.: 0355691903

BIBLIOGRAPHY

Abstract

MASWIRA BINTI MAHASAN is a lecturer at Civil Engineering Deparment, Politeknik Sultan Salahuddin Abdul Aziz Shah. She has teaching experience in the field of Civil Engineering such as Fluid Mechanics, Hydraulics and Water and Waste Water Engineering. She received her master in Water Engineering from Universiti Putra Malaysia (UPM) in 2012. Graduate of Bachelor in Civil Engineering with Honors from Universiti Teknilogi MARA (UiTM) in 2001.

ZURINA BINTI SAFEE is a lecturer at Civil Engineering Deparment, Politeknik Sultan Salahuddin Abdul Aziz Shah. She has teaching experience in the field of Civil Engineering such as Fluid Mechanics, Hydrology and Contract \& Estimating. She received her master in Education (Technical \& Vokasional Education from Universiti Tun Hussein Onn Malaysia (UTHM) in 2007. Graduate of Bachelor in Civil Engineering with Honors from Kolej Universiti Teknologi Tun Hussein On (KUiTTHO) in 2005.

FARIHAH BINTI MANSOR is a lecturer at Civil Engineering Deparment, Politeknik Sultan Salahuddin Abdul Aziz Shah. She has teaching experience in the field of Civil Engineering such as Fluid Mechanics, Hydrology and Hydraulics She received her master in Geotechnical Engineering from Universiti Teknologi Mara (UiTM) in 2019. Graduate of Bachelor in Civil Engineering with Honors from Universiti Teknilogi MARA (UiTM) in 2004.

PREFACE

The production of this e-book is to be used as an interesting alternative learning aid. It developed to allow students to understand the easier method of solving the Momentum Equation. This topic also include in DCC30122 . This eBook presents the principles behind the methods of solving problem for determinate force when subjected to different cases.

With these responsibilities in mind, the objective for this eBook is to develop the student's ability to recognize basic knowledge of fluids mechanics. We provide an adequate number of selftest and problem solving to enhance student knowledge and understanding. Any suggestions, comments and feedback for further improvement are most welcome.

ACKNOWLEDGEMENT

First of all, thanks to Allah S.W.T because of the help, writer finished producing the eBook entitled "Momentum Equations-Problem Solving". We would like to acknowledge the assistance and encouragement of our families and friends who have actively contributed either directly or indirectly to the completion of this eBook. We are very grateful to the Head of Civil Engineering Department and colleagues for the encouragement and support and giving us the opportunity to produce this eBook. We hope that this eBook can benefit students in increasing their understanding of the basic momentum equations of fluid mechanics. Hopefully, this eBook can help the readers to gain more knowledge about problem solving in Momentum Equation.

TABLE OF CONTENT

M O M E N T U M
E Q U A T I O N PROBLEM SOLVING

Preface
 Acknowledgement

01 IMPACT OF A JET ON FLAT PLATE
1.1 Refreshment 2
1.2 Stationary flat plate 6
Example 1.2.1 7
Example 1.2.2 8
Example 1.2.3 9
1.3 Inclined flat plate 10
Example 1.3.1 10
Example 1.3.2 11
1.4 Moving flat plate 12
Example 1.4.1 12
Example 1.4.2 13
Example 1.4.3 14
1.5 Exercise 15
1.6 Practice Problem 19
1.7 Summary of Topic 21
02 IMPACT OF A JET ON CURVED VANE
2.1 Refreshment 23
2.2 Stationary Curved Vane 26
Example 2.2.1 26
Example 2.2.2 28

TABLE OF CONTENT

M OMENTUM
E Q U A T I O N PROBLEM SOLVING

Example 2.2.3 29
Example 2.2.4 32
2.3 Stationary Curved Vane 33
Example 2.3.1 33
Example 2.3.2 35
2.4 Exercise 37
2.5 Practice Problem 41
2.6 Summary of Topic 45
03
FORCED EXERTED ON PIPE BENDS
3.1 Refreshment 47
3.2 Pipe bends 37
Example 3.2.1 49
Example 3.2.2 51
Example 3.2.3 53
Example 3.2.4 55
3.3 Exercise 57
3.4 Practice Problem 62
3.5 Summary of Topic 66
References 67

FLUID MECHANICS

CHAPTER 1

M OMENTUM
 EQUATION-
 PROBLEM SOLVINC

Impact of A Jet Flat Plate

WHAT IS MOMENTUM?

PRINCIPLE OF MOMENTUM EQUATION

Conservation od momentum is another conservation law comparable to conservation of mass. Conservation of momentum uses Newton's second law of flowing fluid.

Newton's First Law of Motion

Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.

Newton's second Law of Motion

Every object in a state of uniform motion tends to remain in that state of motion unless an external force is applied to it.

Newton's Third Law of Motion

For every action there is an equal and opposite reaction.
"The BEAUTIFUL THING
ABOUT LEARNING IS THAT
NOBODY CAN TAKE IT AWAY
FROM YOU."
B.B. KIng

Derivation Of Momentum Equation in Fluid

From Newton's second law on motion,

$$
\text { Momentum }=\frac{m v}{\Delta t}
$$

Since, Mass is constant, velocity will change due to time, then:

$$
\text { Momentum }=m\left[\frac{v 2-v 1}{\Delta t}\right]
$$

From equation of,

$$
\begin{equation*}
\text { Density, } \rho=\frac{\text { mass }}{\text { Volume }} \text {. } \tag{1}
\end{equation*}
$$

Discharge, $Q=\frac{\text { Volume }}{\text { time }}$
Therefore; (1) $\times(2)$

$$
\begin{gathered}
\frac{\text { mass }}{\text { Volume }} x \frac{\text { Volume }}{\text { time }} \\
\frac{m}{t}=\rho Q
\end{gathered}
$$

If ρ and Q does not change,

$$
\text { Hence, } \Sigma F=\rho Q\left(v_{2}-v_{1}\right)
$$

Video Experiment Impact of Jet

INEWHSE8

Video Application of Water Jet

Impact of jet on a stationary flat plate

Impact Of A Jet On A Stationary Flat Plate Inclined at an angle $\boldsymbol{\theta}$

Inclined Plate

Fixed
$\mathrm{F}=\rho A v^{2} \cos \boldsymbol{\theta}$

Moving in the direction of the Jet $F=\rho A(v-u)^{2} \cos \theta$

Moving parallel with the plate

$$
\mathrm{F}=\rho \mathrm{A} \frac{(v-u)}{\cos \theta}(v \cos \theta-u)
$$

Stationary Plat Plate

Question 1.2.1

A jet of water 100 mm in diameter hits a fixed flat plate normally. Calculate the force exerted by the jet when its velocity is $30 \mathrm{~m} / \mathrm{s}$.

Solution 1.2.1

impact of jet on a stationary flat plate:

Given;

$$
\begin{aligned}
& d=100 \mathrm{~mm}=0.1 \mathrm{~m}, \mathrm{~V}=30 \mathrm{~m} / \mathrm{s} \\
& A=\frac{\pi(0.1)^{2}}{4}=7.854 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Force on the plate (stationary)

$$
\begin{aligned}
\mathrm{F} & =\rho A V^{2} \\
& =1000 \times\left(7.854 \times 10^{-3}\right) \times 30^{2} \\
& =7068.6 \mathrm{~N} \\
& =7.069 \mathrm{kN}
\end{aligned}
$$

Stationary Plat Plate

Question 1.2.2

A jet of water 5 cm diameter moves at a rate $36 \mathrm{~km} / \mathrm{hour}$ hits a fixed flat plate normally. Calculate the force due to impact of jet.

Solution 1.2.2

$$
d=5 \mathrm{~cm}=0.05 \mathrm{~m}
$$

$$
V=36 \frac{\mathrm{~km}}{\mathrm{hr}} \times \frac{1 \mathrm{hr}}{3600 \mathrm{~s}} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}}=10 \mathrm{~m} / \mathrm{s}
$$

$$
\mathrm{F}=\rho A V^{2}
$$

$$
=1000 \times\left(\frac{\pi(0.05)^{2}}{4}\right) \times 10^{2}
$$

$$
=196.35 \mathrm{~N}
$$

The more force...
The more acceleration.

Stationary Flat Plate

Question 1.2.3

A jet of water coming out of a 50 mm diameter nozzle hits a stationary plate at right angles. Determine the impact force of the water jet on the plate if the jet has a velocity of $6.3 \mathrm{~m} / \mathrm{s}$.

Solution 1.2.3

Given;

$$
\begin{aligned}
& d=50 \mathrm{~mm}=0.05 \mathrm{~m}, \mathrm{~V}=6.3 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~A}=\frac{\pi(0.05)^{2}}{4}=1.963 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Force on the plate (stationary)

$$
\begin{aligned}
& \mathrm{F}= \rho A V^{2} \\
&= 1000 \times\left(1.963 \times 10^{-3}\right) \times 6.3^{2} \\
& \quad=77.911 \mathrm{~N}
\end{aligned}
$$

Inclined Flat Plate

Question 1.3.1

A jet of oil 15 cm diameter (specific gravity $=0.95$) hits a fixed flat plate. If the oil jet travels with $16 \mathrm{~m} / \mathrm{s}$. Calculate the force exerted by the oil on the plate at the angle of 55° to the plate.

Solution 1.3.1

Given:

$$
\begin{aligned}
\mathrm{d} & =15 \mathrm{~cm}=0.15 \mathrm{~m} \\
v & =16 \mathrm{~m} / \mathrm{s} \\
u & =1.67 \mathrm{~m} / \mathrm{s} \\
0.95 & =\frac{\rho_{\text {oil }}}{1000} \\
\rho_{\text {oil }} & =0.95 \times 1000 \\
& =950 \mathrm{~kg} / \mathrm{m}^{3} \\
F & =\rho A v^{2} \cos \boldsymbol{\theta} \\
& =1000 \times\left(\frac{\pi(0.15)^{2}}{4}\right) \times 16^{2} \times \cos 35 \\
& =3705.757 \mathrm{~N}
\end{aligned}
$$

Inclined Flat Plate

Question 1.3.2

A flat plate is struck normally by a jet of water 50 mm in diameter with a velocity of $18 \mathrm{~m} / \mathrm{s}$. Calculate the force on the plate. Calculate the force exerted by the oil on the plate at the angle of 49° to the plate.

Solution 1.3.2

Given;

$$
\begin{aligned}
& d=50 \mathrm{~mm}=0.5 \mathrm{~m}, \mathrm{~V}=18 \mathrm{~m} / \mathrm{s} \\
& \mathrm{~A}=\frac{\pi(0.05)^{2}}{4}=1.963 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =\rho A v^{2} \cos 35^{\circ} \\
& =1000 \times\left(1.963 \times 10^{-3}\right) \times(18)^{2} \cos 41^{\circ} \\
& =480.004 \mathrm{~N}
\end{aligned}
$$

Moving Flat Plate

Question 1.4.1

A jet of water 25 mm diameter moves at a rate of $6 \mathrm{~m} / \mathrm{s}$ and hits a flat plate capable of moving at a rate $1.5 \mathrm{~m} / \mathrm{s}$ in the same direction as the jet. Compute the force exerted on the plate if the jet hits the plate normally.

Solution 1.4.1

Given:

$$
\begin{gathered}
\mathrm{d}=25 \mathrm{~mm}=0.025 \mathrm{~m} \\
\mathrm{~V}=6 \mathrm{~m} / \mathrm{s} \\
\mu=1.5 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
\begin{aligned}
& F=\rho A(v-u)^{2} \\
& =1000 \times\left(\frac{\pi(0.025)^{2}}{4}\right) \times(6-1.5)^{2}=\mathbf{9 . 9 4 N}
\end{aligned}
$$

Moving Flat Plate

Question 1.4.2

A jet of water 5 cm diameter hits a flat plate at a speed of 33 m / s. If the plate moves at a rate $9 \mathrm{~m} / \mathrm{s}$ in the same direction as the jet, calculate the force exerted by the jet on the moving plate.

Solution 1.4.2

Given:

$$
\begin{gathered}
\mathrm{d}=5 \mathrm{~cm}=0.05 \mathrm{~m} \\
\mathrm{~V}=33 \mathrm{~m} / \mathrm{s} \\
\mu=9 \mathrm{~m} / \mathrm{s} \\
\mathrm{~F}=\rho \mathrm{A}(\mathrm{v}-\mathrm{u})^{2} \\
=1000 \times\left(\frac{\pi(0.05)^{2}}{4}\right) \times(33-9)^{2} \\
=1130.973 \mathrm{~N} \\
=1.131 \mathrm{kN}
\end{gathered}
$$

Moving Flat Plate

Question 1.4.3

A water jet 35 mm diameter move at a rate of $6.5 \mathrm{~m} / \mathrm{s}$ and hits a flat plate capable of moving at a rate $1.73 \mathrm{~m} / \mathrm{s}$ in the same direction as the jet. Compute the force exerted on the plate if the angle between the jet and the plate is 60°.

Solution 1.4.3

Given;

$$
\begin{aligned}
& d=35 \mathrm{~mm}=0.35 \mathrm{~m} \\
& v=6.5 \mathrm{~m} / \mathrm{s} \\
& u=1.73 \mathrm{~m} / \mathrm{s} \\
& A=\frac{\pi(0.35)^{2}}{4}=96.211 \times 10^{-3} \mathrm{~m}^{2}
\end{aligned}
$$

Moving in the direction of the jet

$$
\begin{aligned}
\mathrm{F} & =\rho A(v-u)^{2} \cos \theta \\
& =1000 \times\left(96.211 \times 10^{-3}\right) \times(6.5-1.73)^{2} \cos 30^{\circ} \\
& =1895.798 \mathrm{~N}
\end{aligned}
$$

Mistakes
are proof that you are trying.

QUESTION 1

A water jet 20 cm diameter move at a rate of $10.5 \mathrm{~m} / \mathrm{s}$ and hits a flat fixed plate normally. Compute the force exerted on the plate.

QUESTION 2

An 80 mm diameter jet has a velocity of $41 \mathrm{~m} / \mathrm{s}$ strikes a flat plate. Calculate the normal pressure on the plate if:
i. The plate is statics
ii. The plate is moving with a velocity of $22 \mathrm{~m} / \mathrm{s}$ and away from the jet.

QUESTION 3

A water jet 10 cm diameter strikes a flat plate with the velocity of $20 \mathrm{~m} / \mathrm{s}$.
Calculate the force on the plate if:
i. The plate is statics
ii. The plate is moving with a velocity of $9.5 \mathrm{~m} / \mathrm{s}$ away from the jet
iii. The plate is inclined the angle between the jet and the plate is 64°

SOLUTION EXERCISE CHAPTER 1

SOLUTION 1

$$
\begin{aligned}
& \text { Diameter, } d=20 \mathrm{~cm}=0.20 \mathrm{~m} \\
& \text { Velocity, } V=10.5 \mathrm{~m} / \mathrm{s} \\
& \text { Area, } A=\frac{\pi d^{2}}{4}=\frac{\pi(0.2)^{2}}{4}=0.031 \mathrm{~m}^{2} \\
& \text { Force, } \mathrm{F}=\rho A V^{2} \\
& =1000 \times 0.031 \times 10.5^{2} \\
& =3417.75 \mathrm{~N}
\end{aligned}
$$

SOLUTION EXERCISE CHAPTER 1

SOLUTION 2

Diameter, $d=80 \mathrm{~mm}=0.08 \mathrm{~m}$
Velocity, $V=41 \mathrm{~m} / \mathrm{s}$
Area, $A=\frac{\pi d^{2}}{4}=\frac{\pi(0.08)^{2}}{4}=5.027 \times 10^{-3} \mathrm{~m}^{2}$
i) Force, $F=\rho A V^{2}$

$$
\begin{aligned}
& =1000 \times\left(5.027 \times 10^{-3}\right) \times 41^{2} \\
& =\mathbf{8 4 5 0 . 3 8 7 N}
\end{aligned}
$$

ii) Force, $\mathrm{F}=\rho \mathrm{A}(\mathrm{V}-U)^{2}$

$$
\begin{aligned}
& =1000 \times\left(5.027 \times 10^{-3}\right) \times(41-22)^{2} \\
& =\mathbf{1 8 1 4 . 7 4 7} \mathbf{N}
\end{aligned}
$$

SOLUTION EXERCISE CHAPTER 1

SOLUTION 3

Diameter, $d=10 \mathrm{~mm}=0.01 \mathrm{~m}$
Velocity, $V=20 \mathrm{~m} / \mathrm{s}$
Area, $A=\frac{\pi d^{2}}{4}=\frac{\pi(0.01)^{2}}{4}=7.854 \times 10^{-5} \mathrm{~m}^{2}$
i) Force, $\mathrm{F}=\rho \mathrm{AV}^{2}$

$$
\begin{aligned}
& =1000 \times\left(7.854 \times 10^{-5}\right) \times 20^{2} \\
& =\mathbf{3 1 . 4 1 6 N}
\end{aligned}
$$

ii) Force, $\mathrm{F}=\rho \mathrm{A}(\mathrm{V}-U)^{2}$

$$
\begin{aligned}
& =1000 \times\left(5.027 \times 10^{-3}\right) \times(20-9.5)^{2} \\
& =\mathbf{5 5 4 . 2 2 7} \mathbf{N}
\end{aligned}
$$

iii) Force, $\mathrm{F}=\rho \mathrm{A}(\mathrm{V}-U)^{2} \cos \boldsymbol{\theta}$
$=1000 \times\left(5.027 \times 10^{-3}\right) \times(20-9.5)^{2} \cos 32$
$=470.011 \mathrm{~N}$

Practice Problems
 - Flat Plate-

1. Describe the following law of motion
i. Newton's second law.
ii. Newton's third law.
2. A water jet 100 mm in diameter hits a fixed flat plat normally. Calculate the force exerted by the jet when its velocity is $30 \mathrm{~m} / \mathrm{s}$.
3. A water jet 5 cm hits a flat plate at a speed of $33 \mathrm{~m} / \mathrm{s}$. If the plate moves at a rate $9 \mathrm{~m} / \mathrm{s}$ in the same direction as the jet, calculate the force exerted by the jet on the moving plate.
4. A 95 mm diameter jet having a velocity of 50 meters per second strikes a flat plate. Calculate the normal force on the plate.
5. A 75 mm jet of an oil having specific gravity 0.8 strikes normally a stationary flat plate. If the force exerted by the jet on the plate is 1200 N ,calculate the velocity of jet oil. (8 m)

Practice Problems
 - Flat Plate-

6. A water jet 35 mm diameter move at a rate of $4.5 \mathrm{~m} / \mathrm{s}$ and hits a flat plate capable of moving at a rate $1.7 \mathrm{~m} / \mathrm{s}$ in the same direction as the jet. Compute the force exerted on the plate if:
i. The jet hit the plate normally
ii. The angle between the jet and plate is 60°.
7. An 85 mm diameter jet has a velocity of 40 meters per second strikes a flat plate. Calculate the normal pressure on the plate if:
i. The plate is static
ii. The plate is moving with a velocity of $25 \mathrm{~m} / \mathrm{s}$ and away from the jet.

SUMMARY OF THE TOPIC

Principal of Momentum $=m v$
F = MA (Newton's Second Law)

Momentum in fluid

$$
\begin{gathered}
F=m\left(V_{2}-V_{1}\right) \\
F=\rho Q\left(V_{2}-V_{1}\right)
\end{gathered}
$$

FORMULA USED

i. Stationary or fixed plate

$$
F=\rho Q v=\rho A v^{2}
$$

ii. Moving plate

$$
F=\rho A(v-u)^{2}
$$

iii. Inclined plate

$$
\begin{aligned}
& \mathrm{F}=\rho \mathrm{A} \mathrm{v}^{2} \cos \theta, \\
& \Theta=\text { tangential to water jet }
\end{aligned}
$$

FLUID MECHANICS

CHAPTER 2

MOMENTUM EQUATION-
 PROBLEM SOLVINC

Impact of Jet on Curved Vane

Force of Impact of Jet on a Fixed Curved Vane

Force on the curve vane is caused by the change of momentum of the liquid
$F=$ rate of flow of mass x change in velocity

Video Application of Water Jet on Curve Vane

Force Due To Deflection Of A Jet By Curved Vane

From the equations of momentum，the force components that acts on water jet are；

\star Force in X direction

$$
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)
$$

＊Force in Y direction

$$
\begin{gathered}
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
\therefore \text { Resultant force, } F=\sqrt{F_{x}^{2}+F_{y}^{2}}
\end{gathered}
$$

Direction of resultant force against the x －axis，

$$
\phi=\tan ^{-1} \frac{F_{y}}{F_{x}}
$$

Stationary Curved Vane

Question 2.2.1

A 10 cm diameter jet of water strikes a curved stationary vane with a velocity of $25 \mathrm{~m} / \mathrm{s}$. The angle at inlet is zero and the angle at outlet is 30°. Calculate the magnitude and direction of the resultant force on the curved vane.

Solution 2.2.1

Water discharge;

$$
\begin{aligned}
Q & =A \times v \\
& =\frac{\pi(0.1)^{2}}{4} \times 25 \\
& =0.196 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Solution 2.2.1 cont..

$$
\begin{gathered}
\text { Force in } X \text { direction } \\
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
F x=1000(0.196)\left(25 \cos 30^{\circ}-25\right) \\
=-656.476 N \\
\therefore F_{x}=656.476 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
F y=1000(0.196)\left(25 \sin 30^{\circ}-0\right)
$$

$$
\therefore F_{y}=2450 N(\uparrow)
$$

$$
\mathrm{FR}=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

$$
\mathrm{FR}=\sqrt{656.476^{2}+2450^{2}}
$$

$$
=2.536 k N
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}
$$

$$
\emptyset=\tan ^{-1} \frac{2450}{656.476}=75^{\circ}
$$

\therefore The resultant force on the curved vane,

$$
\mathrm{F}=2.536 k N
$$

\therefore Direction of resultant force against the

$$
x-\text { axis }=75^{\circ}
$$

Stationary Curved Vane

Question 2.2.2

A water jet from 50 mm diameter nozzle is deflected through 60° at $36 \mathrm{~m} / \mathrm{s}$ above a fountain site. The velocity of water leaves from the curved vane is $30 \mathrm{~m} / \mathrm{s}$ due to friction. Calculate the magnitude and direction of the resultant force on the curved vane.

Solution 2.2.2

$$
\begin{aligned}
Q & =A \times v \\
& =\frac{\pi(0.1)^{2}}{4} \times 25 \\
& =0.196 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

Force in X direction

$$
\begin{gathered}
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
F_{x}=1000(0.196)\left(25 \cos 30^{\circ}-25\right) \\
F_{x}=-656.476 N \\
\therefore F_{x}=656.476 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
F_{y}=1000(0.196)\left(25 \sin 30^{\circ}-0\right)
$$

$$
F_{y}=2450 \mathrm{~N}
$$

$$
\therefore F_{y}=2450 N(\uparrow)
$$

$$
\mathrm{Fr}=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

$$
F_{y}=\sqrt{656.476^{2}+2450^{2}}
$$

$$
=2.536 \mathrm{kN}
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{2450}{656.476}=75^{\circ}
$$

\therefore The resultant force on the curved vane, $F=2.536 k N$, and direction of resultant force against the $x-$ axis $=75^{\circ}$

Stationary Curved Vane

Question 2．2．3

A jet of water flows tangentially onto a single stationary vane as shown in the figure below，with an initial velocity，v1 of $16 \mathrm{~m} / \mathrm{s}$ ． The jet is turned through 1200 by the vane ad has an exit velocity of v2．The flow rate of the jet is $0.04 \mathrm{~m} 3 / \mathrm{s}$ ．Calculate the magnitude and direction of the resultant force exerted on the curved vane if：
i．The vane assumed to be smooth
ii．The exit velocity is 85% of the initial flow velocity

Solution 2．2．3

$$
\begin{aligned}
& Q=0.04 \mathrm{~m}^{3} / \mathrm{s} \\
& v_{1 x}=16 \mathrm{~m} / \mathrm{s} \\
& v_{1 y}=0 \mathrm{~m} / \mathrm{s} \\
& \sin 60^{\circ}=\frac{v_{2 y}}{v_{2}} \\
& v_{2 y}=16 \sin 60 \\
& =13.856 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\cos \theta= & \frac{v_{2 x}}{v_{2}} \\
v_{2 y} & =16 \cos 60^{\circ} \\
& =-8 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Stationary Curved Vane

Solution 2.2.3 cont..

a) Vane is assumed to be smooth, $\mathbf{v}_{1}=\mathbf{v}_{\mathbf{2}}$

$$
\begin{gathered}
\text { Force in } \boldsymbol{X} \text { direction } \\
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
F_{x}=1000(0.04)(-8-16) \\
F_{x}=-960 N \\
\therefore F_{x}=960 N(\leftarrow) \\
\text { Force in } \boldsymbol{Y} \text { direction } \\
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
F_{y}=1000(0.04)(13.856-0) \\
F_{y}=554.24 N \\
\therefore F_{y}=554.24 N(\uparrow) \\
F r=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
F_{y}=\sqrt{(960)^{2}+(554.24)^{2}} \\
=\mathbf{1 1 0 8 . 5 0 4 N} \\
=1.109 \mathrm{kN} \\
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{554.24}{960}=30^{\circ}
\end{gathered}
$$

\therefore The resultant force on the curved vane, $F=1.109 k N$, and direction of resultant force against the $x-$ axis $=30^{\circ}$

Stationary Curved Vane

ution 2.2.3 cont..

b) The exit velocity is 85% of the initial flow velocity

Exit velocity, $\mathrm{v}_{2}=85 \% \mathrm{v}_{1}$

$$
=\frac{85}{100} \times 16=13.6 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{array}{rr}
\sin 60^{\circ}=\frac{v_{2 y}}{v_{2}} & \cos \theta=\frac{v_{2 x}}{v_{2}} \\
\left.\begin{array}{rl}
v_{2 y}=13.6 \sin 60 & v_{2 y}
\end{array}\right)=13.6 \cos 60^{\circ} \\
=11.778 \mathrm{~m} / \mathrm{s} & =-6.8 \mathrm{~m} / \mathrm{s} \\
& v_{1 x}=16 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Force in X direction

$$
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)
$$

$$
F_{x}=1000(0.04)(-6.8-16)
$$

$$
F_{x}=-912 N
$$

$$
\therefore F_{x}=912 N(\leftarrow)
$$

Force in Y direction

$$
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
F_{y}=1000(0.04)(11.778-0)
$$

$$
F_{y}=471.12 \mathrm{~N}
$$

$$
\therefore F_{y}=471.12 N(\uparrow)
$$

$$
\begin{gathered}
\mathrm{Fr}=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
F_{y}=\sqrt{(912)^{2}+(471.12)^{2}} \\
= \\
=1026.48 \mathrm{~N} \\
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{471.12}{912}=27.3^{\circ}
\end{gathered}
$$

\therefore The resultant force on the curved vane, $F=1.026 k N$, and direction of resultant force against the $\mathrm{x}-$ axis $=27.3^{\circ}$

Stationary Curved Vane

Question 2．2．4

A water jet through 6 mm diameter and with a velocity of $15 \mathrm{~m} / \mathrm{s}$ strikes a curved vane．The jet deflected through 120° by the vane．

Calculate the magnitude and direction of the resultant force．

Solution 2．2．4

$$
Q=A \times v
$$

$$
\begin{array}{r}
Q= \\
=? \\
=4 \\
542 N
\end{array}
$$

$$
=\frac{\pi(0.006)^{2}}{4} \times 15
$$

Force in X direction

$$
=4.241 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
$$

$F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)$
$=1000\left(4.241 \times 10^{-4}\right)\left(-15 \cos 60^{\circ}-15\right)=-9.542 \mathrm{~N}$
$\therefore F_{x}=9.542 N(\leftarrow)$

Force in Y direction

$F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)$
$=1000\left(4.241 \times 10^{-4}\right)\left(15 \sin 60^{\circ}-0\right)=5.509 \mathrm{~N}$
$\therefore F_{y}=5.509 N(\uparrow)$
$F=\sqrt{F_{x}^{2}+F_{y}^{2}}$
$=\sqrt{9.542^{2}+5.509^{2}}=11.018 \mathrm{~N}$
$\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{5.509}{9.542}=30^{\circ}$
\therefore The resultant force on the curved vane，$F=11.018 \mathrm{kN}$ ， and direction of resultant force against the $\mathrm{x}-\mathrm{axis}=30^{\circ}$

Moving Curved Vane

Question 2.3.1

 and an outlet angle of 25 receives a jet of water at velocity of $50 \mathrm{~m} / \mathrm{s}$. If the vane is moving with a velocity of $20 \mathrm{~m} / \mathrm{s}$ in the direction of the jet, calculate the force components in direction in direction of the vane velocity and across it. Then determine the magnitude and direction of the resultant force acting on the vane. Discharge 1000liter/s.
Solution 2.3.1

$\mathrm{v}=50 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
Q & =\frac{1000 \text { litre }}{S} \quad v_{2 y}=v_{2} \sin \theta \\
& =1 \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

effective velocity $=v-u$

$$
\begin{array}{ll}
=50-20 & v_{1 x}=30 \mathrm{~m} / \mathrm{s} \\
=30 \mathrm{~m} / \mathrm{s} & v_{1 y}=0 \mathrm{~m} / \mathrm{s}
\end{array}
$$

$$
\sin 25^{\circ}=\frac{v_{2 y}}{v_{x}}
$$

$$
v_{2 y}=30 \sin 25
$$

$$
=12.68 \mathrm{~m} / \mathrm{s}
$$

$$
\begin{aligned}
& \cos \theta=\frac{v_{2 x}}{v_{x}} \\
& v_{2 y}=30 \cos 25^{\circ} \\
& =27.19 \mathrm{~m} / \mathrm{sm} / \mathrm{s}
\end{aligned}
$$

Moving Curved Vane

Solution 2.3.1 cont..

$$
\begin{gathered}
\frac{\text { Force in X direction }}{F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)} \\
=1000(1)(-27.19-30)=-57190 N \\
\therefore F_{x}=57190 N(\leftarrow)
\end{gathered}
$$

$$
\begin{gathered}
\text { Force in Y direction } \\
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
=1000(1)(12.68-0)=12680 \mathrm{~N} \\
\therefore F_{y}=12680 \mathrm{~N}(\uparrow) \\
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{(-57190)^{2}+12680^{2}}=58578.823 \mathrm{~N}
\end{gathered}
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{12680}{57190}=12.50^{\circ}
$$

\therefore The resultant force on the curved vane, $F=58.579 k N$, and direction of resultant force against the $x-$ axis $=12.50^{\circ}$

Moving Curved Vane

Question 2.3.2

A A jet of water 6 mm diameter and moving with a velocity of $15 \mathrm{~m} / \mathrm{s}$ strikes a curved vane. The jet deflected through 1200 by the vane. Calculate the magnitude and direction of the resultant force.

Solution 2.3.2

$$
\begin{aligned}
Q & =A \times v \\
& =\frac{\pi(0.006)^{2}}{4} \times 15 \\
& =4.241 \times 10^{-4} \mathrm{~m}^{3} / \mathrm{s}
\end{aligned}
$$

$$
v_{2 y}=v_{2} \sin \theta \underbrace{v_{2}}_{v_{2 x}=v_{2}} \cos \theta
$$

$$
\begin{aligned}
\sin 25^{\circ} & =\frac{v_{2 y}}{v_{x}} \\
v_{2 y} & =30 \sin 25 \\
& =12.68 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$$
\begin{aligned}
\cos \theta & =\frac{v_{2 x}}{v_{x}} \\
v_{2 y} & =30 \cos 25^{\circ} \\
& =27.19 \mathrm{~m} / \mathrm{sm} / \mathrm{s}
\end{aligned}
$$

Moving Curved Vane

Solution 2.3.2 cont..

$$
\begin{gathered}
\frac{\text { Force in X direction }}{F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)} \\
=1000\left(4.241 \times 10^{-4}\right)\left(-15 \cos 60^{\circ}-15\right)=-9.542 N \\
\therefore F_{x}=9.542 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
=1000\left(4.241 \times 10^{-4}\right)\left(15 \sin 60^{\circ}-0\right)=5.509 \mathrm{~N}
$$

$$
\therefore F_{y}=5.509 N(\uparrow)
$$

$$
\begin{gathered}
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{9.542^{2}+5.509^{2}}=11.018 \mathrm{~N}
\end{gathered}
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{5.509}{9.542}=30^{\circ}
$$

\therefore The resultant force on the curved vane, $F=11.018 \mathrm{kN}$, and direction of resultant force against the $x-$ axis $=30^{\circ}$

EXERCISE CHAPTER 2

QUESTION 1

A water jet with a diameter of 50 mm is deflected by 50° at the velocity of the blade. Calculate the magnitude of the force generated by water on the blade when the velocity of water jet leave the blade is $35 \mathrm{~m} / \mathrm{s}$ due to friction

QUESTION 2

A jet of water 50 mm diameter and having a velocity of $25 \mathrm{~m} / \mathrm{s}$ enters tangentially a stationary curved vane and deflected through an angle of 45°. Calculate the magnitude and direction of the resultant force on the vane.

QUESTION 3

A jet of water from a nozzle is deflected through 60° from its original direction by the curved plate which enter it tangentially with a velocity of $30 \mathrm{~m} / \mathrm{s}$ and leaves with a velocity of $25 \mathrm{~m} / \mathrm{s}$. If the discharge from the nozzle is $0.8 \mathrm{~m} / \mathrm{s}$, calculate the magnitude and direction of the resultant force on the vane if the vane stationary. $\left(22.27 \mathrm{~N}, 51^{\circ}\right.$.

SOLUTION EXERCISE CHAPTER 2

SOLUTION 1

$$
\begin{gathered}
A=\frac{\pi d^{2}}{4}=\frac{\pi(0.05)^{2}}{4} \\
A=1.963 \times 10^{-3} \mathrm{~m}^{2} \\
Q=A \times v \\
Q=1.936 \times 10^{-3} \times 35 \\
Q=0.068 \mathrm{~m}^{3} / \mathrm{ss}
\end{gathered}
$$

Force in X direction

$$
\begin{gathered}
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
=1000(0.068)\left(35 \cos 50^{\circ}-35\right)=-850.17 N \\
\therefore F_{x}=850.17 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
\begin{gathered}
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
F_{y}=1000(0.068)\left(35 \sin 50^{\circ}-0\right)=1823.19 \mathrm{~N} \\
\left.\therefore F_{y}=1823.19 \mathrm{~N} \uparrow\right) \\
F R=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
F R=\sqrt{(-850.17)^{2}+(1823.19)^{2}}=2011.59 \mathrm{~N} \\
\emptyset=\tan ^{-1} \frac{1823.19}{-850.17}=-65^{\circ}
\end{gathered}
$$

\therefore The resultant force on the curved vane, $\mathrm{F}=2011.59 \mathrm{~N}$, and direction of resultant force against the $\mathrm{x}-\mathrm{axis}=65^{\circ}$

SOLUTION EXERCISE CHAPTER 2

SOLUTION 2

$$
\begin{gathered}
A=\frac{\pi d^{2}}{4}=\frac{\pi(0.05)^{2}}{4} \\
A=1.963 \times 10^{-3} \mathrm{~m}^{2} \\
Q=A \times v \\
Q=1.936 \times 10^{-3} \times 25 \\
Q=0.0484 \mathrm{~m}^{3} / \mathrm{ss} \\
\text { Force in } X \text { direction } \\
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
=1000(0.0484)\left(25 \cos 45^{\circ}-25\right)=-354.40 \mathrm{~N} \\
\therefore F_{x}=354.40 \mathrm{~N}(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
F_{y}=1000(0.0484)\left(25 \sin 45^{\circ}-0\right)=855.59 \mathrm{~N}
$$

$$
\therefore F_{y}=855.59 N(\uparrow)
$$

$$
F R=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

$$
F R=\sqrt{(-354.40)^{2}+(855.59)^{2}}=926.09 \mathrm{~N}
$$

$$
\emptyset=\tan ^{-1} \frac{855.59}{-354.40}=-67.5^{\circ}
$$

\therefore The resultant force on the curved vane,

$$
\mathrm{F}=926.09 \mathrm{~N},
$$

and direction of resultant force against the $x-$ axis $=67.5^{\circ}$

SOLUTION EXERCISE CHAPTER 2

SOLUTION 3

Given; $Q=0.8 \mathrm{~m}^{3} / \mathrm{s}$

$$
\begin{gathered}
\text { Force in } X \text { direction } \\
F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
F_{x}=1000(0.8)\left(25 \cos 60^{\circ}-30\right)=-14000 \mathrm{~N} \\
\therefore F_{x}=14000 \mathrm{~N}(\leftarrow) \\
\frac{\text { Force in } Y \text { direction }}{F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)} \\
F_{y}=1000(0.8)\left(25 \sin 60^{\circ}-0\right)=17320.51 \mathrm{~N} \\
\therefore F_{y}=17320.51 \mathrm{~N}(\uparrow) \\
F R=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
F R=\sqrt{(-14000)^{2}+(17320.51)^{2}}=22271.06 \mathrm{~N} \\
\emptyset=\text { tan }^{-1} \frac{17320.51}{-14000}=-51.1^{\circ}
\end{gathered}
$$

\therefore The resultant force on the curved vane,

$$
\mathrm{FR}=22271.06 \mathrm{~N},
$$

and direction of resultant force against the x - axis, $\varnothing=51.5^{\circ}$

Practice Problems - Curve Vane -

1. Express Newton's first, second and third laws.
2. A jet of water strikes a single vane, which reverses it through 180° without friction loss. If the jet has an area of $2500 \mathrm{~mm}^{2}$ and velocity of $55 \mathrm{~m} / \mathrm{s}$, find the forced exerted if the vane moves:
i. in the same direction as the jet with a velocity of $20 \mathrm{~m} / \mathrm{s}$
ii. in a direction opposite to that of the jet with a velocity $20 \mathrm{~m} / \mathrm{s}$.
(Ans: (a) $6.13 \mathrm{kN},(b)=28.1 \mathrm{kN}$)
3. A free jet of water with an initial diameter of 2.54 cm strikes the vane shown in Figure 1. Given that $\theta=30^{\circ}$ and $V_{1}=30.48 \mathrm{~m} / \mathrm{s}$. Owing to friction losses assume that $\mathrm{V}_{2}=28.96 \mathrm{~m} / \mathrm{s}$. Flow occurs in a horizontal plane. Calculate the resultant force on the blade.
(Ans: $F_{x}=333.616 N \leftarrow, F_{y}=894.092 N$)

Figure 1

Practice Problems - Curve Vane -

4. A 100 mm diameter water jet with a velocity of $35 \mathrm{~m} / \mathrm{s}$ acts on a series of vanes with $\alpha 1=\beta 1=0$. Neglect friction and find the required blade angle $\beta 2$ in order that the resultant force acting on the vane in the direction of the jet is 950 N. Solve using vane velocities of $0,5,15$ and $25 \mathrm{~m} / \mathrm{s}$. Also find the maximum possible vane velocity.
(Ans: $25.7^{\circ}, 27.8^{\circ}, 34.2^{\circ}, 49.1^{\circ}, 33.3 \mathrm{~m} / \mathrm{s}$)
5. A jet of water exits from a 25 mm diameter nozzle and hits a stationary curved blade as shown in Figure 2. Calculate the x and y components used to hold the curve blade.
(Ans: $F x=16.27 N \leftarrow, F y=18.05 N \uparrow$)

Figure 2

Practice Problems - Curve Vane -

6. A jet of water discharging $40 \mathrm{~kg} / \mathrm{s}$ exits from a 70 mm diameter nozzle and hits a stationary curved blade as shown in Figure 3. Calculate forces Fx and Fy to hold the blade.

$$
\text { (Ans: } F x=525.2 N \leftarrow, F y=300.7 N \uparrow \text {) }
$$

7. Water is flowing out of a nozzle and hits a stationary curved blade as shown in Figure 4. The flow rate in the nozzle is 0.8 kg / s. The flow velocities are $\mathrm{v}_{1}=7 \mathrm{~m} / \mathrm{s}$ and $\mathrm{v}_{2}=6 \mathrm{~m} / \mathrm{s}$. Calculate forces, F_{x} and F_{y} to hold the blade.
(Ans: $F_{x}=2.515 \mathrm{~N}, F_{y}=3.677 \mathrm{~N}$)

Practice Problems - Curve Vane -

8. In Figure 5 assume that friction is negligible, that $\theta=115^{\circ}$, and that the water jet has a velocity of $28.96 \mathrm{~m} / \mathrm{s}$ and a diameter of 2.54 cm . Calculate:
i. the component of the force acting on the blade in the direction on the jet
ii. the force component normal to the jet
iii. the magnitude of the resultant force exerted on the blade.

Ans: (a) $604.513 \mathrm{~N} \rightarrow$, (b) $=384.771 \mathrm{~N} \uparrow$, (c) $=716.608 \mathrm{~N}$ at 32.5°)

Figure 5
9. By using Figure 5 assume that friction is negligible, that $\theta=115^{\circ}$, and that the water jet has a velocity of $25 \mathrm{~m} / \mathrm{s}$ and a diameter of 40 mm . Calculate:
i. the component of the force acting on the blade in the direction on the jet
ii. the force component normal to the jet
iii. the magnitude of the resultant force exerted on the blade.
(Ans: (a) $1117 \mathrm{~N} \rightarrow$, (b) $=712 \mathrm{~N} \uparrow$, (c) $=1325 \mathrm{~N}$ at 32.5°)

SUMMARY OF THE TOPIC

Principal of Momentum $=\mathrm{mv}$

F = MA (Newton's Second Law)

Momentum in fluid

$$
\begin{gathered}
F=m\left(V_{2}-V_{1}\right) \\
F=\rho Q\left(V_{2}-V_{1}\right)
\end{gathered}
$$

FORMULA USED

Force act on y-direction

$$
\Sigma F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)
$$

Force act on y-direction

$$
\Sigma F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

Resultant force, $F=\sqrt{F_{x}^{2}+F_{y}^{2}}$

Direction of resultant,

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}
$$

FLUID MECHANICS

CHAPTER 3

MOMENTUM EQUATIONPROBLEM SOLVINC

Impact of a Jet on Pipe Bends

Principe Of Bernoulli's Equation In Pipe Flow

The relationship between pressure and velocity in pipe flow Bernoulli's Theorem

$$
\Sigma Q \text { in }=\Sigma Q \text { out }
$$

Energy per unit volume before = Energy per unit volume after (by ignored all losses)

$$
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}
$$

Video of Bernoulli's Equation

Force Due To Deflection Of A Jet in Pipe Bends

$$
\begin{gathered}
\text { +ve } \\
\times \text { direction }
\end{gathered}
$$

From the equations of momentum, the force components that acts on water jet are;
\star Force in X direction

$$
\begin{gathered}
\Sigma F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
P_{1} A_{1}+F_{x}-P_{2} A_{2} \cos \theta=\rho Q\left(v_{2} \cos \theta-v_{1}\right)
\end{gathered}
$$

\star Force in Y direction

$$
\begin{gathered}
\Sigma \boldsymbol{F}_{y}=\boldsymbol{\rho Q}\left(\boldsymbol{v}_{2 y}-\boldsymbol{v}_{1 y}\right) \\
\mathbf{0}+\boldsymbol{F}_{y}-\boldsymbol{P}_{2} \boldsymbol{A}_{2} \sin \boldsymbol{\theta}=\boldsymbol{\rho Q}\left(\boldsymbol{v}_{2} \sin \boldsymbol{\theta}-\mathbf{0}\right. \\
\therefore \text { Resultant force, } \boldsymbol{F R}=\sqrt{\boldsymbol{F}_{x}^{2}+\boldsymbol{F}_{y}^{2}}
\end{gathered}
$$

Direction of resultant force against the x - axis,

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}
$$

Example 3.2.1

A pipeline bends in the horizontal plane through an angle of 40°. The diameter of the pipe changes from 60 cm before the bend to 40 cm after it. Water enters the bend at the rate of 500 liters $/ \mathrm{sec}$ with a pressure of $150 \mathrm{kN} / \mathrm{m}^{2}$. Calculate
i. the magnitude
ii. direction of the force exerted on the pipe bend

$$
\begin{array}{c|c}
A_{1}=\frac{\pi\left(d_{1}\right)^{2}}{4} & v_{1}=\frac{Q}{A_{1}}=\frac{0.5}{0.283} \\
=\frac{\pi(0.6)^{2}}{4}=0.283 \mathrm{~m}^{2} & =1.767 \mathrm{~m} / \mathrm{s} \\
A_{2}=\frac{\pi\left(d_{2}\right)^{2}}{4} & v_{2}=\frac{Q}{A_{2}}=\frac{0.5}{0.126} \\
=\frac{\pi(0.4)^{2}}{4}=0.126 \mathrm{~m}^{2} & =3.968 \mathrm{~m} / \mathrm{s}
\end{array}
$$

Use Bernoulli's equation, at horizontal plane, $Z_{1}=Z_{2}$

$$
\begin{gathered}
\frac{\boldsymbol{P}_{\mathbf{1}}}{\boldsymbol{\rho g}}+\frac{\boldsymbol{V}_{\mathbf{1}}^{2}}{2 \boldsymbol{g}}+\boldsymbol{Z}_{\mathbf{1}}=\frac{\boldsymbol{P}_{\mathbf{2}}}{\boldsymbol{\rho} \boldsymbol{g}}+\frac{\boldsymbol{V}_{\mathbf{2}}^{2}}{\mathbf{2 g}}+\boldsymbol{Z}_{\mathbf{2}} \\
\left(\frac{150 \times 10^{3}}{1000 \times 9.81}\right)+\left(\frac{1.767^{2}}{2 \times 9.81}\right)=\left(\frac{P_{2}}{1000 \times 9.81}\right)+\left(\frac{3.968^{2}}{2 \times 9.81}\right) \\
15.45=\left(\frac{P_{2}}{9810}\right)+0.802 \\
P_{2}=14.648 \times 9810 \\
P_{2}=143,696.88 \mathrm{~N} / \mathrm{m}^{2}
\end{gathered}
$$

Solution 3.2.1 cont.,

$$
\begin{gathered}
\text { Force in } X \text { direction } \\
\Sigma \boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{x}}-\boldsymbol{v}_{\mathbf{1} x}\right) \\
\boldsymbol{P}_{1} \boldsymbol{A}_{\mathbf{1}}+\boldsymbol{F}_{x}-\boldsymbol{P}_{2} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2} \cos \boldsymbol{\theta}-\boldsymbol{v}_{\mathbf{1}}\right) \\
150 \times 10^{3}(0.283)+F_{x}-143.697 \times 10^{3}(0.126) \cos 40^{\circ} \\
=1000(0.5)\left(3.968 \cos 40^{\circ}-1.767\right) \\
F_{x}=-27,943.803 \mathrm{~N} \\
\therefore F_{x}=27,943.803 \mathrm{~N}(\leftarrow)
\end{gathered}
$$

$$
\begin{gathered}
\frac{\text { Force in } Y \text { direction }}{\Sigma \boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 y}-\boldsymbol{v}_{\mathbf{1} y}\right)} \\
\mathbf{0}+\boldsymbol{F}_{y}-\boldsymbol{P}_{2} A_{2} \sin \theta=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2} \sin \theta-\mathbf{0}\right) \\
0+F_{y}-143.697 \times 10^{3}(0.126) \sin 40^{\circ}=1000(0.5)\left(3.968 \sin 40^{\circ}-0\right)
\end{gathered}
$$

$$
F_{y}=12,913 \cdot 489 \mathrm{~N}
$$

$$
\therefore F_{y}=12,913.489 N(\uparrow)
$$

$$
\begin{gathered}
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{27,943.803^{2}+12,913.489^{2}}=30,783.345 \mathrm{~N}
\end{gathered}
$$

$$
\varnothing=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{12,913.489}{27,943.803}=24.8^{\circ}
$$

\therefore The resultant force on the pipe bend, $F=\mathbf{3 0}, 783.345 \mathrm{~N}$, and direction of resultant force against the $x-$ axis $=24.8^{\circ}$

Example 3.2.2

Water is flowing in a pipe which tapers from diameter $d_{1}=500 \mathrm{~mm}$ at inlet to $d_{2}=300 \mathrm{~mm}$ at outlet, and turn through an angle of deflection, $\theta=50^{\circ}$. Pressure at inlet $P_{1}=40 \mathrm{kN} / \mathrm{m}^{2}$ and at outlet $P_{2}=23 \mathrm{kN} / \mathrm{m}^{2}$. Calculate the magnitude and direction of the resultant force acting on the bend if flowrate is $500 \mathrm{lit} / \mathrm{s}$.

Solution 3.2.2

$$
\begin{gathered}
A_{1}=\frac{\pi\left(d_{1}\right)^{2}}{4} \\
=\frac{\pi(0.5)^{2}}{4}=0.196 \mathrm{~m}^{2}
\end{gathered}
$$

$$
\begin{gathered}
A_{2}=\frac{\pi\left(d_{2}\right)^{2}}{4} \\
=\frac{\pi(0.3)^{2}}{4}=0.071 \mathrm{~m}^{2}
\end{gathered}
$$

$$
v_{2 x}=v_{2} \cos \theta
$$

$$
\begin{aligned}
v_{1} & =\frac{Q}{A_{1}}=\frac{0.5}{0.196} \\
& =2.551 \mathrm{~m} / \mathrm{s} \\
v_{2} & =\frac{Q}{A_{2}}=\frac{0.5}{0.071} \\
& =7.042 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$P_{2} A_{2} \cos \theta$

Solution 3.2.2 cont.,

$$
\begin{gathered}
\frac{\text { Force in } X \text { direction }}{\Sigma \boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{x}}-\boldsymbol{v}_{\mathbf{1} \boldsymbol{x}}\right)} \\
\boldsymbol{P}_{1} \boldsymbol{A}_{\mathbf{1}}+\boldsymbol{F}_{\boldsymbol{x}}-\boldsymbol{P}_{2} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta } = \boldsymbol { \rho } (\boldsymbol { v } _ { 2 } \operatorname { c o s } \boldsymbol { \theta } - \boldsymbol { v } _ { 1 })} \\
40 \times 10^{3}(0.196)+F_{x}-23 \times 10^{3}(0.071) \cos 50^{\circ} \\
=1000(0.5)\left(7.042 \cos 50^{\circ}-2.551\right) \\
F_{x}=-5802.573 N \\
\therefore F_{x}=5802.573 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
\begin{gathered}
\Sigma \boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{y}}-\boldsymbol{v}_{1 y}\right) \\
\mathbf{0}+\boldsymbol{F}_{y}-\boldsymbol{P}_{2} \boldsymbol{A}_{2} \sin \boldsymbol{\theta}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2} \sin \boldsymbol{\operatorname { s i n }}-\mathbf{0}\right) \\
0+F_{y}-23 \times 10^{3}(0.071) \sin 50^{\circ}=1000(0.5)\left(7.042 \sin 50^{\circ}-0\right) \\
F_{y}=3948.193 N \\
\therefore F_{y}=3948.193 N(\uparrow)
\end{gathered}
$$

$$
\begin{gathered}
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{5802.573^{2}+3948.193^{2}}=7018.41 \mathrm{~N}
\end{gathered}
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{3948.193}{5802.573}=34.2^{\circ}
$$

\therefore The resultant force on the pipe bend, $F=7018.41 \mathrm{~N}$ and direction of resultant force against the $x-$ axis $=34.2^{\circ}$

Example 3.2.3

A reducing bend is turned through 60° in the horizontal plane and the pipe diameter is reduced from 0.25 m to 0.15 m . The velocity and pressure at the entry to the bend are $1.5 \mathrm{~m} / \mathrm{s}$ and $300 \mathrm{kN} / \mathrm{m}^{2}$ gauge respectively and at the exit the pressure is $287.2 \mathrm{kN} / \mathrm{m}^{2}$ gauge. Determine the magnitude and direction of the resultant force on the pipe bend.

Solution 3.2.3

$$
\begin{aligned}
& A_{1}=\frac{\pi\left(d_{1}\right)^{2}}{4} \\
& =\frac{\pi(0.25)^{2}}{4} \\
& =0.049 m^{2} \\
& A_{2}=\frac{\pi\left(d_{2}\right)^{2}}{4} \\
& =\frac{\pi(0.15)^{2}}{4} \\
& =0.018 m^{2}
\end{aligned}
$$

Continuity Equation

$$
\begin{gathered}
Q_{1}=Q_{2} \\
A_{1} \times v_{1}=A_{2} \times v_{2} \\
0.049 \times 1.5=0.018 \times v_{2} \\
v_{2}=\frac{0.074}{0.018} \\
=4.111 \mathrm{~m} / \mathrm{s}
\end{gathered}
$$

$$
\begin{aligned}
& \sin \theta=\frac{\text { Opposite }}{\text { Hypotenuse }} \\
& \cos \theta=\frac{\text { Adjacent }}{\text { Hypotenuse }} \\
& \tan \theta=\frac{\text { Opposite }}{\text { Adjacent }}
\end{aligned}
$$

Solution 3.2.3 cont.,

$$
\begin{gathered}
\text { Force in } X \text { direction } \\
\Sigma \boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{x}}-\boldsymbol{v}_{\mathbf{1} x}\right) \\
\boldsymbol{P}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}}+\boldsymbol{F}_{\boldsymbol{x}}-\boldsymbol{P}_{2} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{\operatorname { c o s } \theta}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2} \cos \boldsymbol{\theta}-\boldsymbol{v}_{\mathbf{1}}\right) \\
300 \times 10^{3}(0.049)+F_{x}-287.2 \times 10^{3}(0.018) \cos 60^{\circ} \\
=1000(0.074)\left(4.111 \cos 60^{\circ}-1.5\right) \\
F_{x}=-12,074.093 \mathrm{~N} \\
\therefore F_{x}=12,074.093 \mathrm{~N}(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
\Sigma F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
0+F_{y}-P_{2} A_{2} \sin \theta=\rho Q\left(v_{2} \sin \theta-0\right)
$$

$$
0+F_{y}-287.2
$$

$$
\times 10^{3}(0.018) \sin 60^{\circ}=1000(0.074)\left(4.111 \sin 60^{\circ}-0\right)
$$

$$
\begin{aligned}
F_{y} & =4740.462 N \\
\therefore F_{y} & =4740.462 N(\uparrow)
\end{aligned}
$$

$$
\begin{gathered}
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{12,074.093^{2}+4740.462^{2}}=12,971.342 \mathrm{~N}
\end{gathered}
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{4740.462}{12,074.093}=21.4^{\circ}
$$

\therefore The resultant force on the pipe bend, $F=12,971.342 N$ and direction of resultant force against the $x-$ axis $=21.4^{\circ}$

Example 3.2.4

A 500 reducing pipe bend tapers from 500 mm diameter at inlet to 200 mm diameter at outlet. The pressure at inlet is $140 \mathrm{kN} / \mathrm{m} 2$ gauge and the flowrate is $0.425 \mathrm{~m} 3 / \mathrm{s}$. Determine the resultant force and direction exerted on the bend.

Solution 3.2.4

Use Bernoulli's equation, at horizontal plane, $Z_{1}=Z_{2}$

$$
\begin{gathered}
\frac{P_{\mathbf{1}}}{\boldsymbol{\rho g}}+\frac{\boldsymbol{V}_{\mathbf{1}}^{2}}{2 \boldsymbol{g}}+Z_{\mathbf{1}}=\frac{\boldsymbol{P}_{\mathbf{2}}}{\boldsymbol{\rho g} \boldsymbol{g}}+\frac{\boldsymbol{V}_{\mathbf{2}}^{2}}{\mathbf{2 g}}+Z_{\mathbf{2}} \\
\left(\frac{140 \times 10^{3}}{1000 \times 9.81}\right)+\left(\frac{2.168^{2}}{2 \times 9.81}\right)=\left(\frac{P_{2}}{1000 \times 9.81}\right)+\left(\frac{13.71^{2}}{2 \times 9.81}\right) \\
14.511=\left(\frac{P_{2}}{9810}\right)+9.58 \\
P_{2}=4.611 \times 9810=48,373.11 \mathrm{~N} / \mathrm{m}^{2}
\end{gathered}
$$

Solution 3.2.4 cont.,

$$
\begin{gathered}
\text { Force in } X \text { direction } \\
\Sigma \boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{x}}-\boldsymbol{v}_{\mathbf{1} \boldsymbol{x}}\right) \\
\boldsymbol{P}_{\mathbf{1}} A_{\mathbf{1}}+\boldsymbol{F}_{x}-\boldsymbol{P}_{2} \boldsymbol{A}_{\mathbf{2}} \cos \boldsymbol{\theta}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2} \cos \boldsymbol{\theta}-\boldsymbol{v}_{\boldsymbol{1}}\right) \\
140 \times 10^{3}(0.196)+F_{x}-48.373 \times 10^{3}(0.031) \cos 50^{\circ} \\
=1000(0.425)\left(13.71 \cos 50^{\circ}-2.168\right) \\
F_{x}=-23,652.137 N \\
\therefore F_{x}=23,652.137 N(\leftarrow)
\end{gathered}
$$

Force in Y direction

$$
\begin{gathered}
\Sigma F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right) \\
0+F_{y}-P_{2} A_{2} \sin \theta=\rho Q\left(v_{2} \sin \theta-0\right) \\
0+F_{y}-48.373 \times 10^{3}(0.031) \sin 50^{\circ}=1000(0.425)\left(13.71 \sin 50^{\circ}-0\right)
\end{gathered}
$$

$$
F_{y}=5612.281 N
$$

$$
\therefore F_{y}=5612.281 N(\uparrow)
$$

$$
F=\sqrt{F_{x}^{2}+F_{y}^{2}}
$$

$$
=\sqrt{23,652 \cdot 137^{2}+5612.281^{2}}=24,303.873 N
$$

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{5612.281}{23,652.137}=13.3^{\circ}
$$

\therefore The resultant force on the pipe bend, $F=24,303.873 \mathrm{~N}$, and direction of resultant force against the $x-$ axis $=13.3^{\circ}$

1 EXERCISE CHAPTER 3

QUedtion 1

A 450 reducing pipe bend taper from 0.5 m diameter at inlet to 0.3 m diameter at outlet is flowing a liquid with a specific gravity of 0.9 as shown in figure below. The pressure at inlet is $145 \mathrm{kN} / \mathrm{m} 2$ and the flow rate of liquid is $0.5 \mathrm{~m} 3 / \mathrm{s}$. Neglecting any loss in the bend, calculate the magnitude and direction of resultant force exerted by the liquid.

QUESTION 2

A pipe bend was deflected to reduce the pipe diameter from 500 mm to 250 mm . The deflection of fluid is 600 . The pressure at the bend $=160 \mathrm{kN} / \mathrm{m} 2$ and the flow rate is $0.70 \mathrm{~m} 3 / \mathrm{s}$. Based in figure below, Calculate magnitude of resultant force at the bend.

SOLUTION EXERCISE CHAPTER 3

SOLUTION 1

$$
\begin{array}{ll}
A_{1}=\frac{\pi\left(d_{1}\right)^{2}}{4} & A_{2}=\frac{\pi\left(d_{2}\right)^{2}}{4} \\
\begin{array}{ll}
A_{1}=\frac{\pi(0.5)^{2}}{4} & A_{2}=\frac{\pi(0.3)^{2}}{4} \\
=0.196 \mathrm{~m}^{2} & =0.071 \mathrm{~m}^{2} \\
=\frac{Q}{A_{1}}=\frac{0.5}{0.196} & v_{2}=\frac{Q}{A_{2}}=\frac{0.5}{0.031} \\
=255 \mathrm{~m} / \mathrm{s} & =16.13 \mathrm{~m} / \mathrm{s}
\end{array}
\end{array}
$$

Use Bernoulli's equation, at horizontal plane, $Z_{1}=Z_{2}$

$$
\begin{gathered}
\frac{\boldsymbol{P}_{\mathbf{1}}}{\boldsymbol{\rho g}}+\frac{\boldsymbol{V}_{\mathbf{1}}^{2}}{2 \boldsymbol{g}}+\boldsymbol{Z}_{\mathbf{1}}=\frac{\boldsymbol{P}_{\mathbf{2}}}{\boldsymbol{\rho g} \boldsymbol{g}}+\frac{\boldsymbol{V}_{\mathbf{2}}^{2}}{\mathbf{2 g}}+\boldsymbol{Z}_{\mathbf{2}} \\
\left(\frac{145 \times 10^{3}}{1000 \times 9.81}\right)+\left(\frac{2.55^{2}}{2 \times 9.81}\right)=\left(\frac{P_{2}}{1000 \times 9.81}\right)+\left(\frac{16.13^{2}}{2 \times 9.81}\right) \\
15.112=\left(\frac{P_{2}}{9810}\right)+13.26 \\
P_{2}=1.852 \times 9810=18168.12 \mathrm{~N} / \mathrm{m}^{2} \\
P_{2}=181.68 \mathrm{kN} / \mathrm{m}^{2}
\end{gathered}
$$

SOLUTION EXERCISE CHAPTER 3

SOLUTION 1

Force in X direction

$$
\Sigma F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)
$$

$$
P_{1} A_{1}+F_{x}-P_{2} A_{2} \cos \theta=\rho Q\left(v_{2} \cos \theta-v_{1}\right)
$$

$$
145 \times 10^{3}(0.196)+F_{x}-181.68 \times 10^{3}(0.071) \cos 45^{\circ}
$$

$$
=1000(0.5)\left(16.13 \cos 45^{\circ}-2.55\right)
$$

$$
F_{x}=-14871.01 N
$$

$$
\therefore F_{x}=14871.01 N(\leftarrow)
$$

Force in Y direction

$$
\Sigma F_{y}=\rho Q\left(v_{2 y}-v_{1 y}\right)
$$

$$
0+F_{y}-P_{2} A_{2} \sin \theta=\rho Q\left(v_{2} \sin \theta-0\right)
$$

$$
0+F_{y}-181.68 \times 10^{3}(0.071) \sin 45^{\circ}=1000(0.5)\left(16.13 \sin 45^{\circ}-0\right)
$$

$$
\begin{gathered}
F_{y}=14823.99 N \\
\therefore F_{y}=14823.99 N(\uparrow) \\
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{(-14871.01)^{2}+(14823.99)^{2}}=20997.56 \mathrm{~N} \\
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{14823.99}{14871.01}=44.9^{\circ}
\end{gathered}
$$

\therefore The resultant force on the pipe bend, $\mathrm{F}=20997.56 \mathrm{~N}$, and direction of resultant force against the $\mathrm{x}-$ axis $=44.9^{\circ}$

SOLUTION EXERCISE CHAPTER 3

SOLUTION 2

$$
\begin{aligned}
A_{1}=\frac{\pi\left(d_{1}\right)^{2}}{4} & A_{2}=\frac{\pi\left(d_{2}\right)^{2}}{4} \\
A_{1}=\frac{\pi(0.5)^{2}}{4} & A_{2}=\frac{\pi(0.25)^{2}}{4} \\
=0.196 \mathrm{~m}^{2} & =0.049 \mathrm{~m}^{2}
\end{aligned} \quad \begin{aligned}
& v_{1}=\frac{Q}{A_{1}}=\frac{0.7}{0.196} v_{2}=\frac{Q}{A_{2}}=\frac{0.7}{0.049} \\
&=3.57 \mathrm{~m} / \mathrm{s} \\
&=14.29 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Use Bernoulli's equation, at horizontal plane, $Z_{1}=Z_{2}$

$$
\begin{gathered}
\frac{\boldsymbol{P}_{\mathbf{1}}}{\boldsymbol{\rho} \boldsymbol{g}}+\frac{\boldsymbol{V}_{\mathbf{1}}^{2}}{\mathbf{2 g}}+\boldsymbol{Z}_{\mathbf{1}}=\frac{\boldsymbol{P}_{\mathbf{2}}}{\boldsymbol{\rho} \boldsymbol{g}}+\frac{\boldsymbol{V}_{\mathbf{2}}^{2}}{\mathbf{2} \boldsymbol{g}}+\boldsymbol{Z}_{\mathbf{2}} \\
\left(\frac{P_{1}}{1000 \times 9.81}\right)+\left(\frac{3.57^{2}}{2 \times 9.81}\right)=\left(\frac{160 \times 10^{3}}{1000 \times 9.81}\right)+\left(\frac{14.29^{2}}{2 \times 9.81}\right) \\
\left(\frac{P_{1}}{9810}\right)+0.649=26.72 \\
P_{2}=26.071 \times 9810=255756.51 \mathrm{~N} / \mathrm{m}^{2} \\
P_{2}=255.76 \mathrm{kN} / \mathrm{m}^{2}
\end{gathered}
$$

SOLUTION EXERCISE CHAPTER 3

SOLUTION 2

Force in X direction

$$
\begin{gathered}
\Sigma \boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{x}}-\boldsymbol{v}_{\mathbf{1} \boldsymbol{x}}\right) \\
\boldsymbol{P}_{\mathbf{1}} \boldsymbol{A}_{\mathbf{1}}+\boldsymbol{F}_{\boldsymbol{x}}-\boldsymbol{P}_{\mathbf{2}} \boldsymbol{A}_{\mathbf{2}} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta } = \boldsymbol { \rho } (\boldsymbol { v } _ { \mathbf { 2 } } \boldsymbol { \operatorname { c o s } \theta } \boldsymbol { \theta } - \boldsymbol { v } _ { \mathbf { 1 } })} \begin{array}{c}
160 \times 10^{3}(0.196)+F_{x}-255.76 \times 10^{3}(0.049) \cos 60^{\circ} \\
=1000(0.7)\left(14.29 \cos 60^{\circ}-3.57\right) \\
F_{x}=-22591.38 N \\
\therefore F_{x}=-22591.38 N(\leftarrow)
\end{array} .
\end{gathered}
$$

Force in Y direction

$$
\begin{gathered}
\Sigma \boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 \boldsymbol{y}}-\boldsymbol{v}_{1 y}\right) \\
\mathbf{0}+\boldsymbol{F}_{\boldsymbol{y}}-\boldsymbol{P}_{2} \boldsymbol{A}_{\mathbf{2}} \sin \boldsymbol{\theta}=\boldsymbol{\rho Q}\left(\boldsymbol{v}_{\mathbf{2}} \sin \boldsymbol{\theta}-\mathbf{0}\right) \\
0+F_{y}-255.76 \times 10^{3}(0.049) \sin 60^{\circ}=1000(0.7)\left(14.29 \sin 60^{\circ}-0\right) \\
F_{y}=19516.09 \mathrm{~N} \\
\therefore F_{y}=19516.09 \mathrm{~N}(\uparrow) \\
F=\sqrt{F_{x}^{2}+F_{y}^{2}} \\
=\sqrt{(-22591.38)^{2}+(19516.09)^{2}}=29853.78 \mathrm{~N} \\
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}=\tan ^{-1} \frac{19516.09}{22591.38}=40.8^{\circ}
\end{gathered}
$$

\therefore The resultant force on the pipe bend, $\mathrm{F}=29853.78 \mathrm{~N}$, and direction of resultant force against the $\mathrm{x}-$ axis $=40.8^{\circ}$

Practice Problems - Pipe bends-

1. A 45° reducing pipe bend tapers from 600 mm diameter at inlet to 300 mm diameter at outlet. At the pressure at inlet is $140 \mathrm{kN} / \mathrm{m}^{2}$ gauge and the rate of flow of water round the bend is $0.45 \mathrm{~m}^{3} / \mathrm{s}$. At outlet the pressure is $123 \mathrm{kN} / \mathrm{m}^{2}$ gauge. Neglecting friction, calculate the resultant force exerted by the water on the bend in magnitude and direction. The bend lies in a horizontal plane.
2. A bend in a pipeline gradually reduces from 600 mm to 300 mm diameter and deflects the flow of water through an angle of 60°. At the larger end the gauge pressure is $172 \mathrm{kN} / \mathrm{m}^{2}$. Assuming there are no frictional losses, determine the magnitude and direction of the resultant force exerted on the bend when the flow is $0.85 \mathrm{~m} 3 / \mathrm{s}$.
3. A 400 mm diameter pipe carries water under a head of 30 meters with a velocity of $3.5 \mathrm{~m} / \mathrm{s}$. If the axis of the pipe turns through 46°, determine the magnitude and the direction of the resultant force at the bend.
4. A pipe bends was deflected to reduce the pipe diameter from 500 mm to 250 mm . The deflection of fluid is 60°. The pressure at the bend $=160 \mathrm{kN} / \mathrm{m}^{2}$. The flow rate is $0.7 \mathrm{~m}^{3} / \mathrm{s}$. Calculate magnitude of resultant force at the bend.

Practice Problems - Pipe bends-

5. A reducing right-angled bend lies in a horizontal plane. Water enters from the west with a velocity of $3 \mathrm{~m} / \mathrm{s}$ and a pressure of 30 kPa , and it leaves towards the north. The diameter at the entrance is 500 mm and the exit it is 400 mm . Neglecting any friction loss, find the magnitude and direction of the resultant force on the bend.
6. The volume of a pipe bend shown in Figure 1 is 250 litres. The flow rate of water in the pipe is 170 litre/s. The pipe diameters at points 1 and 2 are 600 mm and 300 mm respectively. The pressure at points 1 is 200 kPa and the total head loss from point 1 and 2 is 0.3 m . Calculate the x and y components of the force to hold the pipe bend if it is installed in:
i. A vertical plane
ii. A horizontal plane
(Ans: i. $F_{x}=50.10 \mathrm{kN} \leftarrow, F_{y}=13.80 \mathrm{kN}$, ii. $F_{x}=49.58 \mathrm{kN} \leftarrow, F_{y}=12.25 \mathrm{kN} \uparrow$

Success is

Practice Problems - Pipe bends-

7. The volume of a pipe bend shown in Figure 2 is 335 litres. The flow rate of water in the pipe is 525 litre/s. The total head loss from point 1 to 2 is 0.4 m . Calculate the x and y components of the force to hold the pipe bend if it is installed in:
i. A vertical plane
ii. A horizontal plane
(Ans: i. $F_{x}=219.09 \mathrm{kN}, F_{y}=40.05 \mathrm{kN} \downarrow$, ii. $F_{x}=218.59 \mathrm{kN}, F_{y}=42.48 \mathrm{kN} \downarrow$)

8. The flow rate of water flowing out of an 80 mm diameter nozzle shown in Figure 3 is 60 litre/s. The volume of the water in the pipe bend is 50 litres and the pipe bend is installed in a vertical plane. The head loss from point 1 to 2 is 0.44 m . Calculate the x and y force components to hold the pipe bend.
(Ans: $F_{x}=0.933 \mathrm{kN} \leftarrow, F_{y}=0.862 \mathrm{kN} \downarrow$)

Figure 3

Practice Problems - Pipe bends-

9. A reducing elbow is used to deflect water flow at a rate of $14 \mathrm{~kg} / \mathrm{s}$ in a horizontal pipe upward 30° while accelerating it (Figure 4). The elbow discharges water into the atmosphere. The cross-sectional area of the elbow is $113 \mathrm{~cm}^{\wedge} 2$ at the inlet and $7 \mathrm{~cm}^{\wedge} 2$ at the outlet. The elevation difference between the centres of the outlet and the inlet is 30 cm . The weight of the elbow and the water it is considered to be negligible. Determine (a) the gage pressure at the centre of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place.

Figure 4
10. A 90° elbow (Figure 5) is used to direct water flow at a rate of $25 \mathrm{~kg} / \mathrm{s}$ in a horizontal pipe upward. The diameter of the entire elbow is 10 cm . The elbow discharge water into the atmosphere, and thus the pressure at the exit is the local atmospheric pressure. The elevation difference between the centres of the exit and the inlet of the elbow is 35 cm . The weight of the elbow and the water in it is considered to be negligible. Determine (a) the gage pressure at the centre of the inlet of the elbow and (b) the anchoring force needed to hold the elbow in place. Take the momentum-flux correction factor to be 1.03

Figure 5

SUMMARY OF THE TOPIC

Principal of Momentum in fluid

$$
\begin{aligned}
& F=m\left(V_{2}-V_{1}\right) \\
& F=\rho Q\left(V_{2}-V_{1}\right)
\end{aligned}
$$

Principal of Bernoulli's equation

$$
\frac{P_{1}}{\rho g}+\frac{V_{1}^{2}}{2 g}+Z_{1}=\frac{P_{2}}{\rho g}+\frac{V_{2}^{2}}{2 g}+Z_{2}
$$

FORMULA USED

Force act on x -direction

$$
\begin{gathered}
\Sigma F_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right) \\
F_{x+} F 1_{x+}+F 2_{x}=\rho Q\left(v_{2 x}-v_{1 x}\right)
\end{gathered}
$$

Force act on y-direction

$$
\begin{gathered}
\Sigma \boldsymbol{F}_{y}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 y}-\boldsymbol{v}_{1 y}\right) \\
\boldsymbol{F}_{y+} \boldsymbol{F} 1_{y+} \boldsymbol{F} 2_{y}=\boldsymbol{\rho} \boldsymbol{Q}\left(\boldsymbol{v}_{2 y}-\boldsymbol{v}_{1 y}\right)
\end{gathered}
$$

Resultant force, $F=\sqrt{F_{x}^{2}+F_{y}^{2}}$

Direction of resultant,

$$
\emptyset=\tan ^{-1} \frac{F_{y}}{F_{x}}
$$

REFERENCES

Demun, A. S. (2017). Civil Engineering Fluid MechanicsProblem and Solutions. Johor, Malaysia: Universiti Teknologi Malaysia.

Franzini, E. J. (2002). Fluid Mechanics with Engineering Applications-Tenth Edition. New York: McGraw-Hill .

Granet, I. (1996). Fluid Mechanics. New Jersey: Prentice Hall.

Liu, J. B. (1989). 2500 Solved Problem In Fluid Mechanics and Hydraulics. United States of America: Mc Graw-Hill.

Mott, R. L. (1994). Applied Fluid Mechanics-4th Edition. Unites States of America: Prentice Hall.

Mott, R. L. (2006). Applied Fluid Mechanics-Sixth Edition in SI Units. Johor, Malaysia: Pearson, Prentice Hall.

Ranald vV. Giles, J. B. (2014). Fluid Mechanics and Hydraulics-Fourth Edition. United States of America: McGraw-Hill Education.

Yunus A. Cengel, R. H. (2008). Thermal-Fluid Sciences-Third Edition. United States: McGraw-Hill.

Published by:

Politeknik Sultan Salahuddin Abdul Aziz shah Persiaran Usahawan, Seksyen U1, 40150 Shah Alam, Selangor

FLUID MECHANICS

