『ロடiTEIくПilく
 SULTAN SALAHUDDIN ABDUL AZIZ SHAH

DBS 10012
 ENGINEERING SCIENCE

FORCE

 VOLUME 1
LEE TEN TEN
 DIANA MALINI BINTI JARNI MASLINDA BINTI SUKRI

JABATAN MATEMATIK，SAINS DAN KOMPUTER POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

FORCE

VOLUME 1

LEE TEN TEN
DIANA MALINI BINTI JARNI MASLINDA BINTI SUKRI

JABATAN MATEMATIK, SAINS \& KOMPUTER POLITEKNIK SULTAN SALAHUDDIN ABDUL AZIZ SHAH

All Rights Reserved

eISBN No:

e ISBN 978-967-0032-95-5

Published by :

Politeknik Sultan Salahuddin Abdul Aziz Shah (online), Persiaran Usahawan, Seksyen U1, 40150 Shah Alam, Selangor.

Telephone No : +603 51634000
Fax No : +6035569 1903

First published in 2023
All rights reserved. Apart from any use permitted, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher.

synopsis

Welcome to your Force eBook.

This eBook consists of notes and examples of calculation in topic of Force which is developed and revise based on Engineering Science for polytechnics (DBS10012). The goal of this eBook is to provides students an understanding of force in physics through a simple and easy understanding methods.

Preface

We would like to dedicate special thanks to our head of department, Pn Nariman Binti Hj Daud for giving the opportunity and trust in producing this eBook.

Special thanks to eLearning team, CRI units and everyone who involved directly or indirectly at Politeknik Sultan Salahuddin Abdul Aziz Shah, who help develop this eBook successfully.

CONTENT

concept of Force - Page 1

Resultant of Force: Directed at an Angle Page 18

Moment of Force - Page 39

Reference - Page 56

concept of Force

Introduction of Force

Force is a push or pull that can change the shape of an object or change the shape or size of an object, or change the way an object moves.

For instant, when a ball hits the ground, a force changes its shape, speed and direction.

Force is a vector quantity
SI unit : Newton (N) or kgms^{-2}

Formula: $F=\frac{m}{a}$

$$
\begin{aligned}
m & =\operatorname{mass}(\mathrm{kg}) \\
a & =m s^{-2}
\end{aligned}
$$

Definition of Term

Definition

Force is a pushor pull action that will
change the state of rest or motion of an
object.

Symbol : F

Effects of Force

C an change the size or shape of an object

Can move a stationary object

Can stop a moving object

Can change the direction of a moving object

Can accelerate or decelerate a moving object

Difference between Mass and Weight:

	Mass	Weight
Definition	Defined as the amount of matter in an object	Defined as the force of gravity
Effect of gravity	Mass always constant at any place and any time	Weight change according to the gravity
Type of Q	Base quantity, Scalar quantity	Derived quantity, Vector quantity
Formula	$m=F / a \quad m=W / g$	$\mathrm{W}=\mathrm{mg}$
SI Unit	kilogram (kg)	Newton (N)

Newton's First Law

Newton's First Law of motion states that an object will remain at rest or uniform motion in a staight line unless acted upon by an external force

An object at rest will remain at rest

Unless acted on by an unbalanced force

An object in motion will continue with constant speed and direction unless acted on by unbalance force

Newton's Second Law

The acceleration of an object depends on the mass of the object and the amount of force applied

FORCE

When the net external force acts on an object, the acceleration of the object is directly proportional to the net force and inversely proportional to its mass.

$$
a=\frac{F}{m} \quad \rightarrow \quad F=m a
$$

The second law can also be stated in terms of an object's acceleration, thus

$$
\sum F=m\left(\frac{d v}{d t}\right)=m a
$$

Newton's Second Law: calculation

Case 1

Two forces are applied to a toy car with a mass of 10 kg as shown below. What is the acceleration of the car?

$F_{1}=20 N$

$$
F_{2}=60 \mathrm{~N}
$$

(8) THINK

Solution :

$$
a=\frac{F_{n e t}}{m}=\frac{F_{2}-F_{1}}{m}=\frac{60-20}{10}=4 \mathrm{~m} / \mathrm{s}^{2}
$$

Case 2

A wooden block with mass of 4 kg accelerates $6 \mathrm{~m} / \mathrm{s}^{2}$ to the East when forces are applied to it as shown below. What is the amount of the unknown force?

Solution:

$$
\begin{gathered}
F_{n e t}=m \cdot a \\
F_{1}+\text { unknown force }-F_{2}=m \times a \\
30+\text { unknown force }-40=4 \times 6 \\
\text { unknown force }=34 \mathrm{~N}
\end{gathered}
$$

case 3

A friction force of magnitude 25 N acts on an object of mass 15 kg , which is placed on a rough inclined plane as shown in figure. Determine the acceleration of the object moving down the plane ($\mathrm{g}=9.81 \mathrm{~m} / \mathrm{s}^{2}$) .

(June 2013 Final Exam Question)

Solution:

Finding W,

$$
\begin{aligned}
\boldsymbol{W} & =\boldsymbol{m} \boldsymbol{g} \\
& =(15)(9.81)=147.15 \mathrm{~N}
\end{aligned}
$$

Finding F,

$$
\boldsymbol{F}=\boldsymbol{F} \sin 30^{\circ}
$$

$$
=(147.15) \sin 30^{\circ}=73.575 N
$$

Finding $F_{\text {net }}$,

$$
\begin{aligned}
\boldsymbol{F}_{\boldsymbol{n e t}} & =\boldsymbol{F}-\boldsymbol{F}_{\boldsymbol{R}} \\
& =73.575-25=48.575 \mathrm{~N}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\boldsymbol{F} & =\boldsymbol{m a} \\
48.575 & =(15)(a) \\
\therefore a & =\frac{48.575}{15}=\mathbf{3 . 2 4} \boldsymbol{m s}^{-2}
\end{aligned}
$$

Newton's Third Law

For any action, there is a reaction which has the same magnitude but acts in the opposite direction.

For every action force, there is a reaction force equal in strength and opposite in direction

Force in Equilibrium

An object is in equilibrium if the object is at rest or is moving with a constant velocity in a straight line. The force that act on the object are balanced in all directions, the resultant force acting on it is zero. Just like tug-of-wall when the size and direction of the forces acting on an object are exactly balance, then there is no net force acting on the object.

$\longrightarrow F_{2}=10 \mathrm{~N}$

The resultant force $=F_{1}+F_{2}=(-10 \mathrm{~N})+10 \mathrm{~N}=0 \mathrm{~N}$

An object is in equilibrium if :

$$
\begin{array}{ll}
\mathrm{F}_{\mathrm{r}}(\text { friction })=\mathrm{F} \text { (force) } & \text { or } \quad \sum f_{x}=0 \\
\mathrm{~N} \text { (normal })=\mathrm{W} \text { (weight) } & \text { or } \quad \sum f_{y}=0
\end{array}
$$

If the forces acting on an object are balanced, then its motion will not change :

- If it is not moving it will stay still
- If it is moving it will keep moving at a steady speed.

If the forces on an object are not equal, then they are unbalanced, then the motion of the object will change :

- If it is not moving it will start moving.
- If it is moving it will speed up (accelerate), slow down (decelerate), or change direction.

Example

Resultant of Force: In a Straight Line

The resultant force is 6 N to the right.

The resultant force is 7 N to the left.

Tutorial

(Past year questions)

1. State the definition of moment and its SI unit. (Jun 2016)
2. State the definition and SI unit of Force. (Dec 2018)
3. State Two (2) effects of force in everyday life. (Dec 2018)
4. State Two (2) differences between weight and mass. (Jun 2018)
5. A worker pushed a box with mass of 80 kg an horizontal floor with constant acceleration of $2.0 \mathrm{~m} / \mathrm{s}^{2}$. Calculate :
a) The force applied by the worker.
b) The acceleration if 70 kg is released from the box.
(Dec 2016)
6. Calculate the net force acting on the x-axis and y-axis of an object. (Dec 1028)

25N

Check your answers

1. Moment is the product of force and the perpendicular distance of its line of an action from the point.
2. Force can be define as a push or pull action which will change the state of rest or uniform motion of an object.
3. A man pushing a big box. Kids playing archery.
4.

MASS	WEIGHT
Base Quantity	Derived Quantity
Scalar Quantity	Vector Quantity

5. $\mathrm{F}-160 \mathrm{~N}, \mathrm{a}=16 \mathrm{~m} / \mathrm{s}^{2}$
6. $F x=15 \mathrm{~N}, F y=-20 \mathrm{~N}$

Resultant of Force: Directed at an Angle

Introduction
Application of
Resultant Force

introduction:

Application of Resultant

Force

Source: https://www.bartleby.com
SITUATION 1:
A barge loaded with heavy cargo is pulled horizontally by two tugboats.

(8) THINK

There are TWO forces acting on the barge.
> What is the total force (magnitude of resultant force) resulting from the tugboat?
> In which direction is the barge taken by the tugboat?

introduction:

Application of Resultant

Force

SITUATION 2:

Source: http://www.csun.edu
Two crew members pull a raft containing loads with different directions (angles) and force strengths (magnitudes).

(8) THINK

There are TWO forces acting on the raft.
$>$ Did they manage to pull the raft to move towards them?
$>$ What is the total force (magnitude of the resultant force) produced?

introduction:

Application of Resultant

Force

Based on Situation 1 and Situation 2 it can be concluded that

 Resultant Force refers to:"... The Net Force acting on an object when it is subjected to several forces acting in various directions ..."

(CHECK The process of obtaining Resultant Forces:

case 1

QUESTION:

Calculate the magnitude and direction of the Resultant Force:

(8) THINK

There are TWO forces acting:
$>$ A force of 100 N at Quadrant-1 with an angle of 50° from y-axis
$>$ A force of 80 N at Quadrant-2 with an angle of 65° from x-axis.

case 1

Resolve (break down) the y-axis force

- Upward: + sign
+ (upward) + (upward)

$\boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{F} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$		$\boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{F} \sin \boldsymbol{\theta}$	
(a)	$+100 \cos 40=+76.60$	(b)	$+100 \sin 40=+64.28$
(c)	$-80 \cos 65=-33.81$	(d)	$+80 \sin 65=+72.50$
$\sum \boldsymbol{F}_{\boldsymbol{x}}=+\mathbf{4 2 . 7 9} \boldsymbol{N}(\rightarrow)$		$\sum \boldsymbol{F}_{\boldsymbol{y}}=+\mathbf{1 3 6 . 7 8} \boldsymbol{N}$ ($)$	

Coordinate:
(42.79, 136.78)

2

Collect and sum the x-axis forces.

- A positive (+) answer value indicates the Fx direction is to the RIGHT

Collect and sum the y-axis forces

- A Positive (+) answer value indicates the Fy direction is UPWARD

The combination of the RIGHT dan UP direction indicates the Resultant Force is:
$>$ On the right side of the x-axis
$>$ At the top of y-axis
Therefore, the Resultant Force will be in Quadrant-1, ok!

case 1

3
 Calculate the magnitude and direction using formula

Magnitude
(Total of Resultant Force)
$\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}}$
$=\sqrt{(+42.79)^{2}+(+136.78)^{2}}$
$=143.32 \mathrm{~N}$

Direction
(Location of angle from x-axis)
$\tan ^{-1}\left(\frac{\sum F_{y}}{\sum F_{x}}\right)$
$=\tan ^{-1}\left(\frac{136.78}{42.79}\right)$
$=72.6^{\circ}$

3 SUBMIT

FINAL ANSWER:

Sketch the location of Resultant Force based on the answer in step (2) and (3)

- The Resultant Force is located in Quadrant-1, good job!

Case 2

QUESTION:

Calculate the magnitude and direction of the Resultant Force:

(8) THINK

There are TWO forces acting:
$>$ A force of 100 N at Quadrant-1 with an angle of 50° from y-axis
$>$ A force of 80 N now at Quadrant-3 with an angle of 65° from x-axis.

case 2

1 Resolve (break down) the y-axis force

- Upward: + sign
- Downward: - sign

1
Resolve (break down) the x-axis force

- Right direction: + sign
- Left direction: - sign

$\boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{F} \cos \boldsymbol{\theta}$		$\boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{F} \sin \boldsymbol{\theta}$	
(a)	$+100 \cos 40=+76.60$	(b)	$+100 \sin 40=+64.28$
(c)	$-80 \cos 65=-33.81$	(d)	$-80 \sin 65=-72.50$
$\sum \boldsymbol{F}_{\boldsymbol{x}}=+42.79 \boldsymbol{N}(\rightarrow)$		$\sum \boldsymbol{F}_{\boldsymbol{y}}=-\mathbf{8 . 2 2 N}(\downarrow)$	

Coordinate:
(42.79, -8.22)

2 Collect and sum the x-axis forces.

- A positive (+) answer value indicates the Fx direction is to the RIGHT

Collect and sum the y-axis forces

- A Negative (-) answer value indicates the Fy direction is DOWNWARD

CHECK

The combination of the RIGHT dan DOWN direction
indicates the Resultant Force is:
$>$ On the right side of the x-axis
$>$ At the below of y-axis

Therefore, the Resultant Force will be in Quadrant-4, ok!

case 2

3 Calculate the magnitude $\begin{aligned} & \text { Cata } \\ & \text { and direction using formula }\end{aligned}$

Magnitude
(Total of Resultant Force)
$\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}}$
$=\sqrt{(+42.79)^{2}+(-8.22)^{2}}$
$=43.57 \mathrm{~N}$

Direction
(Location of angle from x-axis)
Ignore the negative sign (-) on Fy ok!

(3) SUBMIT

FINAL ANSWER:

Case 3

QUESTION:

Calculate the magnitude and direction of the Resultant Force:

(8) THINK

There are TWO forces acting:
$>$ A force of 100 N at Quadrant-1 with an angle of 50° from y-axis
$>$ A force of 80 N now at Quadrant-4 with an angle of 65° from x-axis.

case 3

Resolve (break down) the y-axis

+ (upward)
force
- Upward: + sign
- Downward: - sign

100N
(a)
$90-50=40^{\circ}$
65°
(c)
(d)

80N

- (downward)

1

Resolve

 (break down) the x-axis force- Right
direction:
+ sign

$\boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{F} \boldsymbol{\operatorname { c o s } \boldsymbol { \theta }}$		$\boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{F} \boldsymbol{\operatorname { s i n } \boldsymbol { \theta }}$			
(a)	$+100 \cos 40=+76.60$	(b)	$+100 \sin 40=+64.28$		
(c)	$+80 \cos 65=+33.81$	(d)	$-80 \sin 65=-72.50$		
$\sum \boldsymbol{F}_{x}=+\mathbf{1 1 0 . 4 1 \boldsymbol { N } (\rightarrow)}$		$\sum \boldsymbol{F}_{\boldsymbol{y}}=-\mathbf{8 . 2 2 \boldsymbol { N }}(\downarrow)$			
				\quad	Coordinate:
:---					
(110.41,-8.22)					

2 Collect and sum the x-axis forces.

- A Positive (+) answer value indicates the Fx direction is to the RIGHT

2

 Collect and sum the y-axis forces- A Negative (-) answer value indicates the Fy direction is DOWNWARD

CHECK

The combination of the RIGHT dan DOWN direction
indicates the Resultant Force is:
$>$ On the right side of the x-axis
$>$ At the below of y-axis

Therefore, the Resultant Force will be in Quadrant-4, ok!

case 3

3 Calculate the magnitude $\begin{aligned} & \text { Cala } \\ & \text { and direction using formula }\end{aligned}$

Magnitude
(Total of Resultant Force)
$\begin{array}{ll}\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}} & \tan ^{-1}\left(\frac{\sum F_{y}}{\sum F_{x}}\right) \\ =\sqrt{(+110.41)^{2}+(-8.22)^{2}} & =\tan ^{-1}\left(\frac{8.22}{110.41}\right)\end{array}$
$=4.3^{\circ}$

3

Direction
(Location of angle from x-axis)
Ignore the negative sign (-) on fy ok!

(3) SUBMIT

FINAL ANSWER:

Sketch the location of Resultant Force based on the answer in step (2) and (3)

- The Resultant Force is located in Quadrant-4, good job!

case 4

QUESTION:

Calculate the magnitude and direction of the Resultant Force:

(8) THINK

There are TWO forces acting:
$>$ A force of 100 N at Quadrant-1 with an angle of 50° from y-axis
$>$ A force of 80 N at Quadrant-3 with an angle of 65° from x-axis is heading to the main point.

case 4

Resolve (break down) the y-axis force

- Upward: + sign

Resolve (break down) the x-axis force

- Right direction: + sign

$\boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{F} \cos \boldsymbol{\theta}$		$\boldsymbol{F}_{\boldsymbol{y}}=\boldsymbol{F} \sin \boldsymbol{\theta}$	
(a)	$+100 \cos 40=+76.60$	(b)	$+100 \sin 40=+64.28$
(c)	$+80 \cos 65=+33.81$	(d)	$+80 \sin 65=+72.50$
$\sum \boldsymbol{F}_{\boldsymbol{x}}=+\mathbf{1 1 0 . 4 1 \boldsymbol { N } (\rightarrow)}$		$\sum \boldsymbol{F}_{\boldsymbol{y}}=+\mathbf{1 3 6 . 7 8 N}(\uparrow)$	

Coordinate:
(110.41, 136. 78

2 Collect and sum the x-axis forces.

- A positive (+) answer value indicates the Fx direction is to the RIGHT

Collect and sum the y-axis forces

- A Positive (+) answer value indicates the Fy direction is UPWARD

CHECK

The combination of the RIGHT dan UP direction indicates the Resultant Force is:
$>$ On the right side of the x-axis
$>$ At the top of y-axis

Therefore, the Resultant Force will be in Quadrant-1, ok!

case 4

3
 Calculate the magnitude and direction using formula

Magnitude
(Total of Resultant Force)
$\sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}}$
$=\sqrt{(+110.41)^{2}+(+136.78)^{2}}$
$=175.78 \mathrm{~N}$

Direction
(Location of angle from x-axis)

$$
\begin{aligned}
& \tan ^{-1}\left(\frac{\sum F_{y}}{\sum F_{x}}\right) \\
& =\tan ^{-1}\left(\frac{136.78}{110.41}\right) \\
& =51.1^{\circ}
\end{aligned}
$$

SUBMIT

FINAL ANSWER:

Sketch the location of Resultant Force based on the answer in step (2) and (3)

- The Resultant Force is located in Quadrant-1, good job!

case S

QUESTION:

Calculate the magnitude and direction of the Resultant Force:

(8) THINK

There are THREE forces acting:
$>$ A force of 100 N at Quadrant-1 with an angle of 50° from y-axis
$>$ Two forces of 80 N now acting along the x-axis and y-axis
case δ

$\boldsymbol{F}_{\boldsymbol{x}}=\boldsymbol{F} \boldsymbol{\operatorname { c o s }} \boldsymbol{\theta}$		$F_{\boldsymbol{y}}=\boldsymbol{F} \boldsymbol{\operatorname { s i n }} \boldsymbol{\theta}$			Coordinate:$(-3.4,15.72)$
(a)	$+100 \cos 40=+76.60$	(b)	$+100 \sin 40=+64.28$		
(c)	$=-80$	(d)		$=-80$	
$\sum F_{x}=-3.4 N(\leftarrow)$		$\sum F_{y}=-15.72 N(\downarrow)$			
2	Collect and sum the x-axis forces. A negative (-) answer value indicates the Fx direction is to the LEFT			2	Collect and sum the y-axis forces A Negative (-) answer value indicates the Fy direction is DOWNWARD

CHECK

The combination of the LEFT dan DOWN direction
indicates the Resultant Force is:
$>$ On the left side of the x-axis
$>$ At the below of y-axis
Therefore, the Resultant Force will be in Quadrant-3, ok!

case S

3 Calculate the magnitude $\begin{aligned} & \text { and } \\ & \text { and direction using formula }\end{aligned}$

Magnitude
(Total of Resultant Force)
$\begin{aligned} & \sqrt{\left(\sum F_{x}\right)^{2}+\left(\sum F_{y}\right)^{2}} \\ &=\sqrt{(-3.4)^{2}+(-15.72)^{2}} \tan ^{-1}\left(\frac{\sum F_{y}}{\sum F_{x}}\right) \\ &=\tan ^{-1}\left(\frac{15.72}{3.4}\right)\end{aligned}$
Direction
(Location of angle from x-axis)
Ignore the negative sign (-) on Fx and Fy ok!
$=16.08 \mathrm{~N}$

(3) SUBMIT

FINAL ANSWER:

Sketch the location of Resultant Force based on the answer in step (2) and (3)

- The Resultant Force is located in Quadrant-3, good job!

Tutorial

Calculate the magnitude and direction of the resultant force:

December 2014
[ANSWER : $\mathrm{F}_{\mathrm{R}}=110.25 \mathrm{~N}, \theta=-36.73^{\circ}$ or 323.27°]

June 2014
[ANSWER : $\mathrm{F}_{\mathrm{R}}=43.46 \mathrm{kN}, \theta=28.01^{\circ}$]

Tutorial

Calculate the magnitude and direction of the resultant force:

June 2015
[ANSWER : $\mathrm{F}_{\mathrm{R}}=17.837 \mathrm{~N}, \quad \theta=258.44^{\circ}$]

June 2016
[ANSWER : $\mathrm{F}_{\mathrm{R}}=32.43 \mathrm{~N}, \quad \theta=100.57^{\circ}$]

Moment of Force

Past Year Questions \& Answer

Moment of Force

WHAT??

Product of force and the
perpendicular distance of an action from point or the turning effect of force

```
Formula???
```


axis of rotation - the line thorugh the pivot point

Moment $=F d$
$M=$ Moment (Nm)
$F=$ Force (N)
d = Perpendicular distance (m)

Unit??

Turning Effect

Newton(meter) $=$ Nm

Total sum of the anti-clockwise moment is equal to the sum of the clockwise moment

STEP TO SOLVE???

Moment Force Method (MFM)

1. Total Force (Fy) is in equilibrium

Methods???
2. $M_{\text {clockwise }}=M_{\text {anti-clockwise }}$

Moment Resultant Method (MRM)

$$
\bar{x}=\frac{\sum \text { Moment }}{\sum \text { Force }}
$$

CASE 1: Center of Gravity or Gravitional Point

Both methods can be used
i) MFM
ii) MRM

1. Make sure all the force is in the direction of y-axis $\left(90^{\circ}\right)$.
2. Place an additional force, F (MFM ONLY) that will support the system (at the appropriate location).
3. Show all the rotation of the moments.
4. The center of gravity, \bar{x} is calculated from from point LSH to point F.

All moment heading to point on LHS

i) Divide F_{1} in Horizontal Elemen ,
$F_{1}=50 \operatorname{Sin} 60=43.3 \mathrm{~N}$
ii) Finding $F, \quad \sum{ }^{\dagger} F_{y}=\sum \downarrow F_{y}$
""Total Force (Fy) is in equilibrium" ${ }^{\text {" }}$

$$
\begin{aligned}
--\bar{F} & =\overline{10} \overline{0}+\overline{43} \cdot \overline{3}---- \\
\therefore F & =143.3 \mathrm{~N}
\end{aligned}
$$

iii) Finding_center of gravity, \bar{x}

$$
\begin{aligned}
& M_{\text {clockwise }}=M_{\text {anti-clockwise }}- \\
& F(\bar{x})=43.3(3)+100(0)
\end{aligned}
$$

$$
143.3(\bar{x})=129.9+0
$$

$$
\therefore \bar{x}=\frac{129.9}{143.3}
$$

$$
=0.91 \mathrm{~m} \text { (from LHS) }
$$

iii) Finding center of gravity, \bar{x}

$$
\begin{aligned}
\bar{x} & =\frac{\sum \text { Moment }}{\sum \text { Force }} \\
(\bar{x}) & =\frac{43.3(3)+100(0)}{100+43.3} \\
\therefore \bar{x} & =\frac{129.9}{143.3} \\
& =0.91 \mathrm{~m}(\text { from } L H S)
\end{aligned}
$$

CASE 2 : Center of Gravity or Gravitational Point

Both methods can be used

i)	MFM
ii)	MRM

1. Make sure all the force is in the direction of y-axis $\left(90^{\circ}\right)$.
2. Place an additional force, F M ONLY) that will support the system (at the appropriate location).
3. Show all the rotation of the moments.
4. The center of gravity, x^{-}is calculated from from point LSH to point F.

All moment heading to point on LHS

i) Finding Weight of the load, $F_{1}=m g=50(9.81)=49.05 \mathrm{~N}$
ii) Finding $\mathrm{F}, \quad \sum \uparrow F_{y}=\sum \downarrow F_{y}$
""Total Force (Fy) is in equilibrium"

- - - - - - - - - - - - - - -

$$
\begin{aligned}
F & =100+49.05 \\
\therefore F & =149.05 N
\end{aligned}
$$

iii) Finding center of gravity, \bar{x} $M_{\text {clockwise }}=M_{\text {anti-clockwise }}$ I

$$
F(\bar{x})=49.05(3)+100(0)
$$

$$
143.3(\bar{x})=147.15+0
$$

$$
\begin{aligned}
\therefore \bar{x} & =\frac{147.15}{143.3} \\
& =0.99 \mathrm{~m}(\text { from LHS })
\end{aligned}
$$

ii) Finding F,

No Need to Find F
iii) Finding center of gravity, \bar{x} $\begin{aligned} \bar{x} & =\frac{\sum \text { Moment }}{\sum \text { Force }} \\ (\bar{x}) & =\frac{49.05(3)+100(0)}{100+43.3}\end{aligned}$
$\therefore \bar{x}=\frac{147.15}{143.3}$
$=0.99 \mathrm{~m}$ (from LHS $)$

CASE 3 : Center of Gravity or Gravitational point

Both methods can be used
i) MFM
ii) MRM

1. Make sure all the force is in the direction of y-axis $\left(90^{\circ}\right)$.
2. Place an additional force, F (MF ONLY) that will support the system (at the appropriate location for).
3. Show all the rotation of the moments.
4. The center of gravity, \bar{x} is calculated from from point LSH to point F.

All moment heading to point on LHS

i) Divide F_{1} in Horizontal Elemen, $F_{1}=50 \sin 60^{\circ}=43.3 \mathrm{~N}$
ii) Finding $\underset{\underline{\prime}}{ } \quad \sum \uparrow F_{\underline{v}}=\sum \underset{\underline{b}}{ } F_{\underline{v}}$
"Total Force (Fy) is in equilibrium"॥

$$
\begin{aligned}
F+43.3 & =100 \\
\therefore F & =100-43.3 \mathrm{~N} \\
& =56.7 \mathrm{~N}
\end{aligned}
$$

iii) Finding center of gravity, \bar{x}
$1 M_{\text {clockwise }}=\bar{M}_{\text {anti-clockwise }}$
$F(\bar{x})+43.3(3)=100(0)$

$$
\begin{aligned}
56.7(\bar{x}) & =-129.9 \\
\therefore \bar{x} & =\frac{-129.9}{56.7} \\
& =-2.29 m(\text { from } L H S)
\end{aligned}
$$

ii) Finding F,

No Need to Find F
iii) Finding center of gravity, \bar{x}

$$
\begin{aligned}
& \overline{\bar{x}}=\frac{\sum \text { Moment }}{\sum \text { Force }} \\
& (\bar{x})=\frac{-43.3(3)+100(0)}{-43.3+0}
\end{aligned}
$$

$$
\begin{aligned}
\therefore \bar{x} & =\frac{-129.9}{56.7} \\
& =-2.29 \mathrm{~m}(\text { from } L H S)
\end{aligned}
$$

Case 4 :Reaction Force

Find Reaction can use MFM ONLY

1. Make sure all the force is in the direction of y-axis $\left(90^{\circ}\right)$.
2. Place an Reaction forced, RA and RB at the support point of the system.
All moment calculated from from point LSH to point F.

All moment heading to point on LHS

STEP 3 : Moment Force Method
i) Divide F_{1} in Horizontal Elemen ,
$F_{1}=50 \sin 60=43.3 N$
ii) Using $-\sum^{\uparrow} F_{y}=\sum \downarrow F_{y}$
"T"Total Force (fy) is in equilibrium"।

- $R_{A}-R_{B}^{-}=-\overline{100}+\overline{43} \overline{3}^{-}$
$R_{A}+R_{B}=100+43.3$
$R_{A}+R_{B}=143.3 \mathrm{~N}$
iii) Using Total Moment =_0

II $M_{\text {clockwise }}=M_{\text {anti-clockwise }}$
Mclockwise $=M_{\text {anti-clockwise }}$

$$
\bar{R}_{A}(0) \overline{+} \bar{R}_{B}(4)=100(0)+43.3(3)
$$

$$
\therefore R_{B} \quad=\quad \frac{129.9}{4}=32.48 \mathrm{~N}
$$

$$
\therefore R_{A} \quad=143.3-32.48
$$

$$
=\quad 110.82 \mathrm{~N}
$$

$$
R_{A}+R_{B}=100+43.3
$$

CASE S : Reaction Force

Find Reaction can use MFM ONLY

1. Make sure all the force is in the direction of y-axis $\left(90^{\circ}\right)$.
2. Place an Reaction forced, RA and RB at the support point of the system.
3. All moment calculated from from point LSH to point F.

All moment heading to point on LHS

STEP 3 : Moment Force Method
i) Divide F_{1} in Horizontal Elemen ; none Inclined force
ii) Using $\quad \sum \uparrow F y=\Sigma \downarrow F_{y}$
|"Total Force (Fy) is in equilibrium"।
$R_{A}+R_{B}=100+\mathrm{F}$
$R_{A}+70=100+\mathrm{F}$
iii) Using Total Moment = 0

$$
\begin{aligned}
M_{\text {clockwise }}=M_{\text {anti-clockwise }}-\| R_{A}(0)+70(4) & =100(0)+\mathrm{F}(3) \\
\therefore \mathrm{F} & =\frac{280}{3} \\
& =\mathbf{9 3 . 3 N}
\end{aligned}
$$

$$
\begin{aligned}
R_{A}+70 & =100+93.3 \\
& =193.3-70 \\
& =\mathbf{1 2 3 . 3 N}
\end{aligned}
$$

Tutorial

Calculate the center of gravity, x from point A to be system in equilibrium

December 2013
[ANSWER : $\bar{x}=4.2 \mathrm{~m}$ from A

June 2015
[ANSWER : $\bar{x}=4.83 \mathrm{~m}$ from A]

June 2016
[ANSWER : $\bar{x}=2.20 \mathrm{~m}$ from A]

Tutorial

The solar panels are fitted to a frame supported by a beam, as shown in Figure(a) and the forces acted on the beam as shown in the Figure(b). Calculate the size of reaction force, $\mathbf{R}_{\mathbf{2}}$ by considering the moment at R_{1}

June 2017
[ANSWER : $\mathrm{R}_{2}=425$]
Figure shows a loaded beam. Find the reaction force, F and the value of \mathbf{x} if the beam is in equilibrium. Given $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{2}$.

[ANSWER : $\bar{x}=2.385 \mathrm{~m}, \mathrm{~F}=67.07 \mathrm{~N}$]

References

Lee Soo Leng, Lee Ten Ten, Saidatul Asyikin Mohamed, Siti Nurul Huda Romli, Zuraidah Omar (2020). Engineering Science For Polytechnics 2020 Edition. Muhibbah Publication.

Diana Malini Jarni, Lee Soo Leng, Maslinda Sukri (2020). Analysis Of Final Examination Question Engineering Science (2020 Editions). Muhibbah Publication.

Homework Help and Textbook Solutions I bartleby. (2017). Bartleby.com. https://www.bartleby.com

California State University, Northridge. (2019). California State University, Northridge. http://www.csun.edu

Lesson Explainer: Moment of a Force about a Point in 3D I Nagwa. (n.d.). Www.nagwa.com. https://www.nagwa.com/en/explainers/578146356938/

Cyberphysics - Moments and Levers. (n.d.). Www.cyberphysics.co.uk.
https://www.cyberphysics.co.uk/topics/forces/moments.htm
Moments. (n.d.). Miss Wise's Physics Site. Retrieved September 27, 2023, from http://misswise.weebly.com/moments.html

